Lösung 1.2:3b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:3b moved to Solution 1.2:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The outer function in the expression is "the root of something",
-
<center> [[Image:1_2_3b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}</math>
-
<center> [[Image:1_2_3b-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
and differentiating with the chain rule gives
 +
 
 +
 
 +
<math>\frac{d}{dx}\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}=\frac{1}{2\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}}\centerdot \left( \frac{x+1}{x-1} \right)^{\prime }</math>
 +
 
 +
 
 +
We establish the inner derivative by using the quotient rule,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{d}{dx}\sqrt{\frac{x+1}{x-1}}=\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{\left( x+1 \right)^{\prime }\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot \left( x-1 \right)^{\prime }}{\left( x-1 \right)^{2}} \\
 +
& =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{1\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot 1}{\left( x-1 \right)^{2}} \\
 +
& =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{-2}{\left( x-1 \right)^{2}} \\
 +
& =-\sqrt{\frac{x-1}{x+1}\centerdot }\frac{1}{\left( x-1 \right)^{2}} \\
 +
& =-\frac{1}{\left( x-1 \right)^{{3}/{2}\;}\sqrt{x+1}} \\
 +
\end{align}</math>
 +
 
 +
 
 +
where we have used the simplification
 +
 
 +
 
 +
<math>\frac{\sqrt{x-1}}{\left( x-1 \right)^{2}}=\frac{\left( x-1 \right)^{{1}/{2}\;}}{\left( x-1 \right)^{2}}=\left( x-1 \right)^{\frac{1}{2}-2}=\left( x-1 \right)^{-\frac{3}{2}}=\frac{1}{\left( x-1 \right)^{\frac{3}{2}}}</math>

Version vom 12:45, 12. Okt. 2008

The outer function in the expression is "the root of something",


\displaystyle \sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}


and differentiating with the chain rule gives


\displaystyle \frac{d}{dx}\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}=\frac{1}{2\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}}\centerdot \left( \frac{x+1}{x-1} \right)^{\prime }


We establish the inner derivative by using the quotient rule,


\displaystyle \begin{align} & \frac{d}{dx}\sqrt{\frac{x+1}{x-1}}=\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{\left( x+1 \right)^{\prime }\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot \left( x-1 \right)^{\prime }}{\left( x-1 \right)^{2}} \\ & =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{1\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot 1}{\left( x-1 \right)^{2}} \\ & =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{-2}{\left( x-1 \right)^{2}} \\ & =-\sqrt{\frac{x-1}{x+1}\centerdot }\frac{1}{\left( x-1 \right)^{2}} \\ & =-\frac{1}{\left( x-1 \right)^{{3}/{2}\;}\sqrt{x+1}} \\ \end{align}


where we have used the simplification


\displaystyle \frac{\sqrt{x-1}}{\left( x-1 \right)^{2}}=\frac{\left( x-1 \right)^{{1}/{2}\;}}{\left( x-1 \right)^{2}}=\left( x-1 \right)^{\frac{1}{2}-2}=\left( x-1 \right)^{-\frac{3}{2}}=\frac{1}{\left( x-1 \right)^{\frac{3}{2}}}