Lösung 1.2:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.2:1a moved to Solution 1.2:1a: Robot: moved page) |
K |
||
| Zeile 1: | Zeile 1: | ||
| - | Because the expression is a product of two factors, we use the product rule | + | Because the expression is a product of two factors, we use the product rule, |
| + | {{Displayed math||<math>\begin{align} | ||
| + | (\sin x\cdot\cos x)^{\prime } | ||
| + | &= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] | ||
| + | &= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt] | ||
| + | &= -\sin^2\!x + \cos^2\!x\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| - | + | Using the formula for double angles, the answer can be simplified to <math>\cos 2x\,</math>. | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | Using the formula for double angles, the answer can be simplified to | + | |
| - | <math>\cos 2x</math> | + | |
| - | . | + | |
Version vom 13:40, 14. Okt. 2008
Because the expression is a product of two factors, we use the product rule,
| \displaystyle \begin{align}
(\sin x\cdot\cos x)^{\prime } &= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] &= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt] &= -\sin^2\!x + \cos^2\!x\,\textrm{.} \end{align} |
Using the formula for double angles, the answer can be simplified to \displaystyle \cos 2x\,.
