Lösung 1.1:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:2c moved to Solution 1.1:2c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We differentiate term by term:
-
<center> [[Image:1_1_2c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& {f}'\left( x \right)=\frac{d}{dx}\left( e^{x}-\ln x \right) \\
 +
& =\frac{d}{dx}e^{x}-\frac{d}{dx}\ln x=e^{x}-\frac{1}{x} \\
 +
\end{align}</math>
 +
 
 +
 
 +
NOTE: because
 +
<math>\text{ln }x</math>
 +
is not defined for
 +
<math>x\le 0</math>
 +
we assume implicitly that
 +
<math>x>0</math>.

Version vom 11:22, 10. Okt. 2008

We differentiate term by term:


\displaystyle \begin{align} & {f}'\left( x \right)=\frac{d}{dx}\left( e^{x}-\ln x \right) \\ & =\frac{d}{dx}e^{x}-\frac{d}{dx}\ln x=e^{x}-\frac{1}{x} \\ \end{align}


NOTE: because \displaystyle \text{ln }x is not defined for \displaystyle x\le 0 we assume implicitly that \displaystyle x>0.