Lösung 1.2:1f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-[[Bild: +[[Image:))
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by
-
<center> [[Image:1_2_1f-1(2).gif]] </center>
+
<math>\sin x</math>
-
{{NAVCONTENT_STOP}}
+
". As a first step, we therefore use the quotient rule,
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:1_2_1f-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<math>\left( \frac{x\ln x}{\sin x} \right)^{\prime }=\frac{\left( x\ln x \right)^{\prime }\centerdot \sin x-x\ln x\centerdot \left( \sin x \right)^{\prime }}{\left( \sin x \right)^{2}}</math>
 +
 
 +
 
 +
We can, in turn, differentiate the expression
 +
<math>x\ln x</math>
 +
by using the product rule:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( x\ln x \right)^{\prime }=\left( x \right)^{\prime }\ln x+x\left( \ln x \right)^{\prime } \\
 +
& \\
 +
& =1\centerdot \ln x+x\centerdot \frac{1}{x}=\ln x+1 \\
 +
\end{align}</math>
 +
 
 +
 
 +
All in all, we thus obtain
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( \frac{x\ln x}{\sin x} \right)^{\prime }=\frac{\left( \ln x+1 \right)\centerdot \sin x-x\ln x\centerdot \cos x}{\left( \sin x \right)^{2}} \\
 +
& \\
 +
& =\frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin ^{2}x} \\
 +
\end{align}</math>

Version vom 15:53, 12. Sep. 2008

In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by \displaystyle \sin x ". As a first step, we therefore use the quotient rule,


\displaystyle \left( \frac{x\ln x}{\sin x} \right)^{\prime }=\frac{\left( x\ln x \right)^{\prime }\centerdot \sin x-x\ln x\centerdot \left( \sin x \right)^{\prime }}{\left( \sin x \right)^{2}}


We can, in turn, differentiate the expression \displaystyle x\ln x by using the product rule:


\displaystyle \begin{align} & \left( x\ln x \right)^{\prime }=\left( x \right)^{\prime }\ln x+x\left( \ln x \right)^{\prime } \\ & \\ & =1\centerdot \ln x+x\centerdot \frac{1}{x}=\ln x+1 \\ \end{align}


All in all, we thus obtain


\displaystyle \begin{align} & \left( \frac{x\ln x}{\sin x} \right)^{\prime }=\frac{\left( \ln x+1 \right)\centerdot \sin x-x\ln x\centerdot \cos x}{\left( \sin x \right)^{2}} \\ & \\ & =\frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin ^{2}x} \\ \end{align}