Lösung 1.2:1e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-[[Bild: +[[Image:))
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The quotient rule gives
-
<center> [[Image:1_2_1e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \left( \frac{x}{\ln x} \right)^{\prime }=\frac{\left( x \right)^{\prime }\centerdot \ln x-x\centerdot \left( \ln x \right)^{\prime }}{\left( \ln x \right)^{2}} \\
 +
& \\
 +
& =\frac{1\centerdot \ln x-x\centerdot \frac{1}{x}}{\left( \ln x \right)^{2}}=\frac{\ln x-1}{\left( \ln x \right)^{2}}=\frac{1}{\ln x}-\frac{1}{\left( \ln x \right)^{2}} \\
 +
\end{align}</math>

Version vom 15:39, 12. Sep. 2008

The quotient rule gives


\displaystyle \begin{align} & \left( \frac{x}{\ln x} \right)^{\prime }=\frac{\left( x \right)^{\prime }\centerdot \ln x-x\centerdot \left( \ln x \right)^{\prime }}{\left( \ln x \right)^{2}} \\ & \\ & =\frac{1\centerdot \ln x-x\centerdot \frac{1}{x}}{\left( \ln x \right)^{2}}=\frac{\ln x-1}{\left( \ln x \right)^{2}}=\frac{1}{\ln x}-\frac{1}{\left( \ln x \right)^{2}} \\ \end{align}