Antwort 3.3:2

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:05, 5. Sep. 2009) (bearbeiten) (rückgängig)
 
Zeile 5: Zeile 5:
|width="33%"| <math>z = \left\{\begin{matrix} \frac{1}{2}+\frac{1}{2}\sqrt{3}\,i \\ -1\phantom{{}-\frac{1}{2}\sqrt{3}\,i} \\ \frac{1}{2}-\frac{1}{2}\sqrt{3}\,i \\ \end{matrix}\right.</math>
|width="33%"| <math>z = \left\{\begin{matrix} \frac{1}{2}+\frac{1}{2}\sqrt{3}\,i \\ -1\phantom{{}-\frac{1}{2}\sqrt{3}\,i} \\ \frac{1}{2}-\frac{1}{2}\sqrt{3}\,i \\ \end{matrix}\right.</math>
|c)
|c)
-
|width="33%"| <math>\displaystyle z=2^{1/10}\exp\Bigl(\frac{\pi i}{4}+\frac{2n\pi i}{5}\Bigr)</math> für <math>\ n=0,1,2,3,4</math>
+
|width="33%"|<math>z= \left\{\begin{matrix} 2^{\frac{1}{10}}e^{i(\frac{\pi}{4})} \\ 2^{\frac{1}{10}}e^{i(\frac{13\pi}{20})} \\ 2^{\frac{1}{10}}e^{i(\frac{21\pi}{20})} \\ 2^{\frac{1}{10}}e^{i(\frac{29\pi}{20})}\\ 2^{\frac{1}{10}}e^{i(\frac{37\pi}{20})} \\ \end{matrix}\right.</math>
|-
|-
|d)
|d)

Aktuelle Version

a) \displaystyle z= \left\{\begin{matrix} \phantom{-}1 \\ -1 \\ \phantom{-}i \\ -i\\ \end{matrix}\right. b) \displaystyle z = \left\{\begin{matrix} \frac{1}{2}+\frac{1}{2}\sqrt{3}\,i \\ -1\phantom{{}-\frac{1}{2}\sqrt{3}\,i} \\ \frac{1}{2}-\frac{1}{2}\sqrt{3}\,i \\ \end{matrix}\right. c) \displaystyle z= \left\{\begin{matrix} 2^{\frac{1}{10}}e^{i(\frac{\pi}{4})} \\ 2^{\frac{1}{10}}e^{i(\frac{13\pi}{20})} \\ 2^{\frac{1}{10}}e^{i(\frac{21\pi}{20})} \\ 2^{\frac{1}{10}}e^{i(\frac{29\pi}{20})}\\ 2^{\frac{1}{10}}e^{i(\frac{37\pi}{20})} \\ \end{matrix}\right.
d) \displaystyle z= \left\{\begin{matrix} 2+i \\ 2-i \\ \phantom{-}i \\ -i\\ \end{matrix}\right. e) \displaystyle z = \left\{\begin{matrix} \phantom{-}1 \\ -1 \end{matrix}\right.