Lösung 1.2:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (15:09, 1. Okt. 2009) (bearbeiten) (rückgängig)
 
Zeile 7: Zeile 7:
Da die Funktion verkettet ist, erhalten wir die Ableitung der Funktion mit der Kettenregel
Da die Funktion verkettet ist, erhalten wir die Ableitung der Funktion mit der Kettenregel
-
{{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} = \frac{1}{\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'\,,</math>}}
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln \bbox[#FFEEAA;,1.5pt]{\,(\ln x)\,} = \frac{1}{\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'\,,</math>}}
-
wo der erste Faktor <math>1/\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}</math> die äußere Ableitung von <math>\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,}</math> ist und der zweite Faktor <math>\bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'</math> die innere Ableitung ist. Wir erhalten also
+
wo der erste Faktor <math>1/\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}</math> die äußere Ableitung von <math>\ln \bbox[#FFEEAA;,1.5pt]{\,(\ln x)\,}</math> ist und der zweite Faktor <math>\bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'</math> die innere Ableitung ist. Wir erhalten also
-
{{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln\ln x = \frac{1}{\ln x}\cdot \frac{1}{x} = \frac{1}{x\ln x}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln(\ln x) = \frac{1}{\ln x}\cdot \frac{1}{x} = \frac{1}{x\ln x}\,\textrm{.}</math>}}

Aktuelle Version

Wir betrachten die Funktion als "den Logarithmus von irgendetwas"

\displaystyle \ln \bbox[#FFEEAA;,1.5pt]{\phantom{\ln x}}\,,

wo das "irgendetwas" \displaystyle \ln x ist.

Da die Funktion verkettet ist, erhalten wir die Ableitung der Funktion mit der Kettenregel

\displaystyle \frac{d}{dx}\,\ln \bbox[#FFEEAA;,1.5pt]{\,(\ln x)\,} = \frac{1}{\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'\,,

wo der erste Faktor \displaystyle 1/\bbox[#FFEEAA;,1.5pt]{\,\ln x\,} die äußere Ableitung von \displaystyle \ln \bbox[#FFEEAA;,1.5pt]{\,(\ln x)\,} ist und der zweite Faktor \displaystyle \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)' die innere Ableitung ist. Wir erhalten also

\displaystyle \frac{d}{dx}\,\ln(\ln x) = \frac{1}{\ln x}\cdot \frac{1}{x} = \frac{1}{x\ln x}\,\textrm{.}