Lösung 3.3:4c
Aus Online Mathematik Brückenkurs 2
K (Solution 3.3:4c moved to Lösung 3.3:4c: Robot: moved page) |
|||
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Durch quadratische Ergänzung der linken Seite erhalten wir | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 6: | Zeile 6: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Und die Wurzeln sind <math>z+1=\pm i\sqrt{2}</math>, also <math>z=-1+i\sqrt{2}</math> und <math>z=-1-i\sqrt{2}</math>. | |
- | + | Wir substituieren die Wurzeln in der ursprünglichen Gleichung und erhalten | |
<math>\begin{align} | <math>\begin{align} |
Aktuelle Version
Durch quadratische Ergänzung der linken Seite erhalten wir
\displaystyle \begin{align}
(z+1)^2-1^2+3 &= 0\,,\\[5pt] (z+1)^2+2 &= 0\,\textrm{.} \end{align} |
Und die Wurzeln sind \displaystyle z+1=\pm i\sqrt{2}, also \displaystyle z=-1+i\sqrt{2} und \displaystyle z=-1-i\sqrt{2}.
Wir substituieren die Wurzeln in der ursprünglichen Gleichung und erhalten
\displaystyle \begin{align} z=-1+i\sqrt{2}:\quad z^2+2z+3 &= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt] &= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt] &= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt] &= 0,\\[10pt] z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3 &= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt] &= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt] &= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt] &= 0\,\textrm{.} \end{align}