Lösung 2.2:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Aktuelle Version (12:23, 27. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
If we focus on the integrand, then the substitution <math>u=3x+1</math> seems suitable, since we then get <math>\sqrt{u}</math> which we can integrate. There is also no risk involved in using a linear substitution such as <math>u=3x+1</math>, because the relation between <math>dx</math> and <math>du</math> will be a constant factor,
+
Die Substitution <math>u=3x+1</math> ergibt einen einfacheren Integrand. Da <math>u=3x+1</math> eine lineare Funktion ist, ist das Verhältnis zwischen <math>dx</math> und <math>du</math> nur eine Konstante.
-
{{Displayed math||<math>du = (3x+1)'\,dx = 3\,dx\,,</math>}}
+
{{Abgesetzte Formel||<math>du = (3x+1)'\,dx = 3\,dx</math>}}
-
which does not cause any problems.
+
Wir erhalten
-
We obtain
+
{{Abgesetzte Formel||<math>\begin{align}
-
 
+
-
{{Displayed math||<math>\begin{align}
+
\int\limits_0^5 \sqrt{3x+1}\,dx
\int\limits_0^5 \sqrt{3x+1}\,dx
&= \left\{\begin{align}
&= \left\{\begin{align}

Aktuelle Version

Die Substitution \displaystyle u=3x+1 ergibt einen einfacheren Integrand. Da \displaystyle u=3x+1 eine lineare Funktion ist, ist das Verhältnis zwischen \displaystyle dx und \displaystyle du nur eine Konstante.

\displaystyle du = (3x+1)'\,dx = 3\,dx

Wir erhalten

\displaystyle \begin{align}

\int\limits_0^5 \sqrt{3x+1}\,dx &= \left\{\begin{align} u &= 3x+1\\[5pt] du &= 3\,dx \end{align}\right\} = \frac{1}{3}\int\limits_1^{16} \sqrt{u}\,du\\[5pt] &= \frac{1}{3}\int\limits_1^{16} u^{1/2}\,du = \frac{1}{3}\biggl[\ \frac{u^{1/2+1}}{\tfrac{1}{2}+1}\ \biggr]_1^{16}\\[5pt] &= \frac{1}{3}\Bigl[\ \frac{2}{3}u\sqrt{u}\ \Bigr]_1^{16} = \frac{2}{9}\bigl( 16\sqrt{16}-1\sqrt{1} \bigr)\\[8pt] &= \frac{2}{9}\bigl( 16\cdot 4-1 \bigr) = \frac{2\cdot 63}{9} = 14\,\textrm{.} \end{align}