Lösung 3.2:4b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:35, 13. Mai 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We calculate what the expression will be
+
Wir berechnen zuerst den Ausdruck,
 +
{{Abgesetzte Formel||<math>(2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i</math>}}
-
<math>\left( 2-i \right)+\left( 5+3i \right)=2+5+\left( -1+3 \right)i=7+2i</math>
+
und berechnen seinen Betrag,
-
and then take the magnitude:
+
{{Abgesetzte Formel||<math>|7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.}</math>}}
-
<math>\left| 7+2i \right|=\sqrt{7^{2}+2^{2}}=\sqrt{49+4}=\sqrt{53}</math>
+
Hinweis: Es ist nicht möglich den Betrag der beiden Terme einfach zu addieren;
-
 
+
{{Abgesetzte Formel||<math>|(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.}</math>}}
-
NOTE: Note that it is not possible to take the magnitude of the terms individually
+
-
 
+
-
 
+
-
<math>\left| \left( 2-i \right)+\left( 5+3i \right) \right|\ne \left| 2-i \right|+\left| 5+3i \right|</math>
+

Aktuelle Version

Wir berechnen zuerst den Ausdruck,

\displaystyle (2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i

und berechnen seinen Betrag,

\displaystyle |7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.}


Hinweis: Es ist nicht möglich den Betrag der beiden Terme einfach zu addieren;

\displaystyle |(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.}