Lösung 2.2:4b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:01, 27. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We could substitute
+
Es wäre möglich, die Substitution <math>u=x-1</math> zu machen, aber dies würde nicht das Problem mit dem Term 3 lösen. Wir ziehen stattdessen den Faktor 3 aus den Nenner
-
<math>u=x-\text{1}</math>, but we would then still have the problem of the second term,
+
-
<math>\text{3}</math>
+
-
in the denominator. Instead, we take out a factor
+
-
<math>\text{3}</math>
+
-
from the denominator,
+
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\int \frac{dx}{(x-1)^2+3}
 +
&= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt]
 +
&= \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
und schreiben den Faktor <math>\tfrac{1}{3}</math> in das Quadrat <math>(x-1)^2</math>.
-
& \int{\frac{\,dx}{\left( x-1 \right)^{2}+3}}=\int{\frac{\,dx}{3\left( \frac{1}{3}\left( x-1 \right)^{2}+1 \right)}} \\
+
-
& =\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}} \\
+
-
\end{align}</math>
+
-
and move a factor
+
{{Abgesetzte Formel||<math>\frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}</math>}}
-
<math>\frac{1}{3}</math>
+
-
into the square
+
-
<math>\left( x-1 \right)^{2}</math>,
+
 +
Jetzt machen wir die Substitution <math>u = (x-1)/\!\sqrt{3}</math> und erhalten
-
<math>\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}}=\frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}</math>
+
{{Abgesetzte Formel||<math>\begin{align}
-
 
+
\frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}
-
Now, we substitute
+
&= \left\{\begin{align}
-
<math>u=\frac{x-1}{\sqrt{3}}</math>
+
u &= (x-1)/\!\sqrt{3}\\[5pt]
-
and get rid of all the problems at once:
+
du &= dx/\!\sqrt{3}
-
 
+
\end{align}\right\}\\[5pt]
-
 
+
&= \frac{1}{3}\int \frac{\sqrt{3}\,du}{u^2+1}\\[5pt]
-
<math>\begin{align}
+
&= \frac{\sqrt{3}}{3}\int \frac{du}{u^2+1}\\[5pt]
-
& \frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}=\left\{ \begin{matrix}
+
&= \frac{1}{\sqrt{3}}\arctan u + C\\[5pt]
-
u=\frac{x-1}{\sqrt{3}} \\
+
&= \frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}} + C\,\textrm{.}
-
du=\frac{\,dx}{\sqrt{3}} \\
+
\end{align}</math>}}
-
\end{matrix} \right\} \\
+
-
& =\frac{1}{3}\int{\frac{\sqrt{3}\,du}{u^{2}+1}}=\frac{\sqrt{3}}{3}\int{\frac{\,du}{u^{2}+1}} \\
+
-
& =\frac{1}{\sqrt{3}}\arctan u+C \\
+
-
& =\frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}}+C \\
+
-
\end{align}</math>
+

Aktuelle Version

Es wäre möglich, die Substitution \displaystyle u=x-1 zu machen, aber dies würde nicht das Problem mit dem Term 3 lösen. Wir ziehen stattdessen den Faktor 3 aus den Nenner

\displaystyle \begin{align}

\int \frac{dx}{(x-1)^2+3} &= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt] &= \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} \end{align}

und schreiben den Faktor \displaystyle \tfrac{1}{3} in das Quadrat \displaystyle (x-1)^2.

\displaystyle \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}

Jetzt machen wir die Substitution \displaystyle u = (x-1)/\!\sqrt{3} und erhalten

\displaystyle \begin{align}

\frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1} &= \left\{\begin{align} u &= (x-1)/\!\sqrt{3}\\[5pt] du &= dx/\!\sqrt{3} \end{align}\right\}\\[5pt] &= \frac{1}{3}\int \frac{\sqrt{3}\,du}{u^2+1}\\[5pt] &= \frac{\sqrt{3}}{3}\int \frac{du}{u^2+1}\\[5pt] &= \frac{1}{\sqrt{3}}\arctan u + C\\[5pt] &= \frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}} + C\,\textrm{.} \end{align}