Lösung 2.1:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Wir schreiben <math>\sqrt{x}</math> wie <math>x^{1/2}</math> und erhalten durch die Rechenregeln für Exponenten | |
- | <math>\sqrt{x}</math> | + | |
- | + | ||
- | <math>x^ | + | |
+ | {{Abgesetzte Formel||<math>\int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}</math>}} | ||
- | <math> | + | Die Stammfunktion von <math>x^{n}</math> ist <math>x^{n+1}/(n+1)</math> und damit berechnen das Integral. |
- | + | {{Abgesetzte Formel||<math>\begin{align} | |
- | + | \int\limits_1^4 x^{-3/2}\,dx | |
- | + | &= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt] | |
- | + | &= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt] | |
- | + | &= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt] | |
- | + | &= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt] | |
- | + | &= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt] | |
- | + | &= -\frac{2}{2}+2\\[5pt] | |
- | <math>\begin{align} | + | &= 1 |
- | + | \end{align}</math>}} | |
- | & =\ | + | |
- | & =\ | + | |
- | & =-\frac{2}{2}+2 | + | |
- | \end{align}</math> | + |
Aktuelle Version
Wir schreiben \displaystyle \sqrt{x} wie \displaystyle x^{1/2} und erhalten durch die Rechenregeln für Exponenten
\displaystyle \int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.} |
Die Stammfunktion von \displaystyle x^{n} ist \displaystyle x^{n+1}/(n+1) und damit berechnen das Integral.
\displaystyle \begin{align}
\int\limits_1^4 x^{-3/2}\,dx &= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt] &= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt] &= -\frac{2}{2}+2\\[5pt] &= 1 \end{align} |