Lösung 1.2:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (10:44, 20. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We can write the expression as
+
Wir schreiben unseren Ausdruck wie folgt
 +
{{Abgesetzte Formel||<math>\frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{.}</math>}}
-
<math>\frac{1}{x\sqrt{1-x^{2}}}=\left( x\sqrt{1-x^{2}} \right)^{-1}</math>,
+
Wir sehen, dass die äußere Funktion "irgendetwas hoch -1" ist. Verwenden wir die Kettenregel, erhalten wir die Ableitung.
-
and then we see that we have "something raised to
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>-\text{1}</math>", which can be differentiated one step by using the chain rule:
+
\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}
 +
&= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
 +
&= -\frac{1}{\bigl(x\sqrt{1-x^2}\bigr)^2}\cdot \bigl(x\sqrt{1-x^2}\bigr)'\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\cdot\bigl(x\sqrt{1-x^2}\bigr)'\,\textrm{}
 +
\end{align}</math>}}
 +
Die Ableitung von <math>x\cdot\sqrt{1-x^2}</math> erhalten wir durch die Faktorregel.
-
<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
-
& \frac{d}{dx}\left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{-1}=-1\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{\prime } \\
+
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
-
& =-\frac{1}{\left( x\sqrt{1-x^{2}} \right)^{2}}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\
+
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\
+
&= -\frac{1}{x^2(1-x^2)}\cdot \Bigl(1\cdot\sqrt{1-x^2} + x\cdot (\sqrt{1-x^2})'\Bigr)\,\textrm{}
-
\end{align}</math>
+
\end{align}</math>}}
 +
Wir verwenden wieder die Kettenregel, um <math>\sqrt{1-x^2}</math> abzuleiten.
-
The next step is to differentiate the product
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>x\centerdot \sqrt{1-x^{2}}</math>
+
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
-
using the product rule:
+
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot ( -2x)\Bigr)\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\Bigr)\,\textrm{}
 +
\end{align}</math>}}
 +
Schreiben wir den Ausdruck mit gemeinsamen Nenner, erhalten wir
-
<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \left( x \right)^{\prime }\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\
+
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( 1\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\
+
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
-
\end{align}</math>
+
&= -\frac{1}{x^2(1-x^2)}\cdot \frac{1-x^2-x^2}{\sqrt{1-x^2}}\\[5pt]
 +
&= -\frac{1-2x^2}{x^2(1-x^2)^{3/2}}\,\textrm{.}
 +
\end{align}</math>}}
-
The expression
+
Hinweis: Wenn wir Vereinfachungen wie <math>(\sqrt{1-x^2} \bigr)^2 = 1-x^2</math> erstellen, nehmen wir an, dass beide Seiten definiert sind (in diesem Fall, dass <math>x</math> zwischen -1 und 1 liegt).
-
<math>\sqrt{1-x^{2}}</math>
+
-
is of the type "root of something", so we use the chain rule to differentiate,
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\left( 1-x^{2} \right)^{\prime } \right) \\
+
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right) \right) \\
+
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}} \right) \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
We write the expression on the right over a common denominator:
+
-
 
+
-
<math>\begin{align}
+
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{\left( \sqrt{1-x^{2}} \right)^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\
+
-
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{1-x^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\
+
-
& =-\frac{1-2x^{2}}{x^{2}\left( 1-x^{2} \right)^{{3}/{2}\;}} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
NOTE: When we make simplifications of the form
+
-
<math>\left( \sqrt{1-x^{2}} \right)^{2}=1-x^{2}</math>, we assume that both sides are well defined (i.e. in this case that
+
-
<math>x</math>
+
-
lies between
+
-
<math>-\text{1}</math>
+
-
and
+
-
<math>\text{1}</math>
+
-
).
+

Aktuelle Version

Wir schreiben unseren Ausdruck wie folgt

\displaystyle \frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{.}

Wir sehen, dass die äußere Funktion "irgendetwas hoch -1" ist. Verwenden wir die Kettenregel, erhalten wir die Ableitung.

\displaystyle \begin{align}

\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1} &= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{\bigl(x\sqrt{1-x^2}\bigr)^2}\cdot \bigl(x\sqrt{1-x^2}\bigr)'\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot\bigl(x\sqrt{1-x^2}\bigr)'\,\textrm{} \end{align}

Die Ableitung von \displaystyle x\cdot\sqrt{1-x^2} erhalten wir durch die Faktorregel.

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \Bigl(1\cdot\sqrt{1-x^2} + x\cdot (\sqrt{1-x^2})'\Bigr)\,\textrm{} \end{align}

Wir verwenden wieder die Kettenregel, um \displaystyle \sqrt{1-x^2} abzuleiten.

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot ( -2x)\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\Bigr)\,\textrm{} \end{align}

Schreiben wir den Ausdruck mit gemeinsamen Nenner, erhalten wir

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \frac{1-x^2-x^2}{\sqrt{1-x^2}}\\[5pt] &= -\frac{1-2x^2}{x^2(1-x^2)^{3/2}}\,\textrm{.} \end{align}


Hinweis: Wenn wir Vereinfachungen wie \displaystyle (\sqrt{1-x^2} \bigr)^2 = 1-x^2 erstellen, nehmen wir an, dass beide Seiten definiert sind (in diesem Fall, dass \displaystyle x zwischen -1 und 1 liegt).