Lösung 1.2:1d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:1d moved to Solution 1.2:1d: Robot: moved page)
Aktuelle Version (07:32, 20. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We have a quotient between
+
Da wir einen Quotienten haben, verwenden wir die Quotientenregel, um die Funktion abzuleiten.
-
<math>\sin x</math>
+
-
and
+
-
<math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule:
+
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\Bigl(\frac{\sin x}{x}\Bigr)'
 +
&= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt]
 +
&= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt]
 +
&= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Es ist auch möglich, die Funktion als ein Produkt von <math>\sin x</math> und
-
& \left( \frac{\sin x}{x} \right)^{\prime }=\frac{\left( \sin x \right)^{\prime }\centerdot x-\sin x\centerdot \left( x \right)^{\prime }}{x^{2}} \\
+
<math>1/x</math> zu betrachten und die Funktion mit der Faktorregel abzuleiten.
-
& \\
+
-
& =\frac{\cos x\centerdot x-\sin x\centerdot 1}{x^{2}}=\frac{\cos x}{x}-\frac{\sin x}{x^{2}} \\
+
-
\end{align}</math>
+
-
It is also possible to see the expression as a product of
+
{{Abgesetzte Formel||<math>\begin{align}
-
+
\Bigl(\sin x\cdot\frac{1}{x}\Bigr)'
-
<math>\sin x</math>
+
&= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt]
-
and
+
&= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt]
-
<math>\frac{1}{x}</math>, and to use the product rule,
+
&= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,
 +
\end{align}</math>}}
 +
Dabei verwendeten wir
-
<math>\begin{align}
+
{{Abgesetzte Formel||<math>\Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.}</math>}}
-
& \left( \sin x\centerdot \frac{1}{x} \right)^{\prime }=\left( \sin x \right)^{\prime }\centerdot \frac{1}{x}+\sin x\centerdot \left( \frac{1}{x} \right)^{\prime } \\
+
-
& \\
+
-
& =\cos x\centerdot \frac{1}{x}+\sin x\centerdot \left( -\frac{1}{x^{2}} \right)=\frac{\cos x}{x}-\frac{\sin x}{x^{2}} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
where we have used
+
-
 
+
-
 
+
-
<math>\left( \frac{1}{x} \right)^{\prime }=\left( x^{-1} \right)^{\prime }=\left( -1 \right)x^{-1-1}=-1\centerdot x^{-2}=-\frac{1}{x^{2}}</math>
+

Aktuelle Version

Da wir einen Quotienten haben, verwenden wir die Quotientenregel, um die Funktion abzuleiten.

\displaystyle \begin{align}

\Bigl(\frac{\sin x}{x}\Bigr)' &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] &= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{} \end{align}

Es ist auch möglich, die Funktion als ein Produkt von \displaystyle \sin x und \displaystyle 1/x zu betrachten und die Funktion mit der Faktorregel abzuleiten.

\displaystyle \begin{align}

\Bigl(\sin x\cdot\frac{1}{x}\Bigr)' &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] &= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\, \end{align}

Dabei verwendeten wir

\displaystyle \Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.}