Lösung 1.2:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-[[Bild: +[[Image:))
Aktuelle Version (10:44, 20. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Wir schreiben unseren Ausdruck wie folgt
-
<center> [[Image:1_2_3c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Abgesetzte Formel||<math>\frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:1_2_3c-2(2).gif]] </center>
+
Wir sehen, dass die äußere Funktion "irgendetwas hoch -1" ist. Verwenden wir die Kettenregel, erhalten wir die Ableitung.
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}
 +
&= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
 +
&= -\frac{1}{\bigl(x\sqrt{1-x^2}\bigr)^2}\cdot \bigl(x\sqrt{1-x^2}\bigr)'\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\cdot\bigl(x\sqrt{1-x^2}\bigr)'\,\textrm{}
 +
\end{align}</math>}}
 +
 
 +
Die Ableitung von <math>x\cdot\sqrt{1-x^2}</math> erhalten wir durch die Faktorregel.
 +
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
 +
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\cdot \Bigl(1\cdot\sqrt{1-x^2} + x\cdot (\sqrt{1-x^2})'\Bigr)\,\textrm{}
 +
\end{align}</math>}}
 +
 
 +
Wir verwenden wieder die Kettenregel, um <math>\sqrt{1-x^2}</math> abzuleiten.
 +
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot ( -2x)\Bigr)\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\Bigr)\,\textrm{}
 +
\end{align}</math>}}
 +
 
 +
Schreiben wir den Ausdruck mit gemeinsamen Nenner, erhalten wir
 +
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
 +
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
 +
&= -\frac{1}{x^2(1-x^2)}\cdot \frac{1-x^2-x^2}{\sqrt{1-x^2}}\\[5pt]
 +
&= -\frac{1-2x^2}{x^2(1-x^2)^{3/2}}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
 
 +
Hinweis: Wenn wir Vereinfachungen wie <math>(\sqrt{1-x^2} \bigr)^2 = 1-x^2</math> erstellen, nehmen wir an, dass beide Seiten definiert sind (in diesem Fall, dass <math>x</math> zwischen -1 und 1 liegt).

Aktuelle Version

Wir schreiben unseren Ausdruck wie folgt

\displaystyle \frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{.}

Wir sehen, dass die äußere Funktion "irgendetwas hoch -1" ist. Verwenden wir die Kettenregel, erhalten wir die Ableitung.

\displaystyle \begin{align}

\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1} &= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{\bigl(x\sqrt{1-x^2}\bigr)^2}\cdot \bigl(x\sqrt{1-x^2}\bigr)'\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot\bigl(x\sqrt{1-x^2}\bigr)'\,\textrm{} \end{align}

Die Ableitung von \displaystyle x\cdot\sqrt{1-x^2} erhalten wir durch die Faktorregel.

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \Bigl(1\cdot\sqrt{1-x^2} + x\cdot (\sqrt{1-x^2})'\Bigr)\,\textrm{} \end{align}

Wir verwenden wieder die Kettenregel, um \displaystyle \sqrt{1-x^2} abzuleiten.

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot ( -2x)\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\Bigr)\,\textrm{} \end{align}

Schreiben wir den Ausdruck mit gemeinsamen Nenner, erhalten wir

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \frac{1-x^2-x^2}{\sqrt{1-x^2}}\\[5pt] &= -\frac{1-2x^2}{x^2(1-x^2)^{3/2}}\,\textrm{.} \end{align}


Hinweis: Wenn wir Vereinfachungen wie \displaystyle (\sqrt{1-x^2} \bigr)^2 = 1-x^2 erstellen, nehmen wir an, dass beide Seiten definiert sind (in diesem Fall, dass \displaystyle x zwischen -1 und 1 liegt).