3.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[3.1 Räkning med komplexa tal|Teori]]}}
+
{{Ej vald flik|[[3.1 Räkning med komplexa tal|Theory]]}}
-
{{Vald flik|[[3.1 Övningar|Övningar]]}}
+
{{Vald flik|[[3.1 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 3.1:1===
+
===Exercise 3.1:1===
<div class="ovning">
<div class="ovning">
-
Skriv i formen <math>\,a+bi\,</math>, där <math>\,a\,</math> och <math>\,b\,</math> är reella tal
+
Write in the form <math>\,a+bi\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 28: Zeile 28:
</div>{{#NAVCONTENT:Svar|Svar 3.1:1|Lösning a|Lösning 3.1:1a|Lösning b|Lösning 3.1:1b|Lösning c|Lösning 3.1:1c|Lösning d|Lösning 3.1:1d|Lösning e|Lösning 3.1:1e|Lösning f|Lösning 3.1:1f}}
</div>{{#NAVCONTENT:Svar|Svar 3.1:1|Lösning a|Lösning 3.1:1a|Lösning b|Lösning 3.1:1b|Lösning c|Lösning 3.1:1c|Lösning d|Lösning 3.1:1d|Lösning e|Lösning 3.1:1e|Lösning f|Lösning 3.1:1f}}
-
===Övning 3.1:2===
+
===Exercise 3.1:2===
<div class="ovning">
<div class="ovning">
-
Skriv i formen <math>\,a+bi\,</math>, där <math>\,a\,</math> och <math>\,b\,</math> är reella tal
+
Write in the form <math>\,a+bi\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> where b are real numbers,
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 44: Zeile 44:
</div>{{#NAVCONTENT:Svar|Svar 3.1:2|Lösning a|Lösning 3.1:2a|Lösning b|Lösning 3.1:2b|Lösning c|Lösning 3.1:2c|Lösning d|Lösning 3.1:2d}}
</div>{{#NAVCONTENT:Svar|Svar 3.1:2|Lösning a|Lösning 3.1:2a|Lösning b|Lösning 3.1:2b|Lösning c|Lösning 3.1:2c|Lösning d|Lösning 3.1:2d}}
-
===Övning 3.1:3===
+
===Exercise 3.1:3===
<div class="ovning">
<div class="ovning">
-
Bestäm det reella tal <math>\,a\,</math> så att uttrycket <math>\ \displaystyle\frac{3+i}{2+ai}\ </math> blir rent imaginärt (dvs. realdel lika med noll).
+
Determine the real number <math>\,a\,</math> such that the expression <math>\ \displaystyle\frac{3+i}{2+ai}\ </math> becomes purely imaginary (i.e. the real part equals zero).
 +
 
</div>{{#NAVCONTENT:Svar|Svar 3.1:3|Lösning |Lösning 3.1:3}}
</div>{{#NAVCONTENT:Svar|Svar 3.1:3|Lösning |Lösning 3.1:3}}
-
===Övning 3.1:4===
+
===Exercise 3.1:4===
<div class="ovning">
<div class="ovning">
-
Lös ekvationerna
+
Solve the equations
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Version vom 12:19, 4. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 3.1:1

Write in the form \displaystyle \,a+bi\,, where \displaystyle \,a\, and \displaystyle \,b\, are real numbers

a) \displaystyle (5-2i)+(3+5i) b) \displaystyle 3i -(2-i)
c) \displaystyle i(2+3i) d) \displaystyle (3-2i)(7+5i)
e) \displaystyle (1+i)(2-i)^2 f) \displaystyle i^{\,20} + i^{\,11}

Exercise 3.1:2

Write in the form \displaystyle \,a+bi\,, where \displaystyle \,a\, and \displaystyle \,b\, where b are real numbers,

a) \displaystyle \displaystyle\frac{3-2i}{1+i} b) \displaystyle \displaystyle\frac{3i}{4-6i} - \displaystyle\frac{1+i}{3+2i}
c) \displaystyle \displaystyle\frac{(2-i\sqrt{3}\,)^2}{1+i\sqrt{3}} d) \displaystyle \displaystyle\frac{5-\displaystyle\frac{1}{1+i}}{3i + \displaystyle\frac{i}{2-3i}}

Exercise 3.1:3

Determine the real number \displaystyle \,a\, such that the expression \displaystyle \ \displaystyle\frac{3+i}{2+ai}\ becomes purely imaginary (i.e. the real part equals zero).


Exercise 3.1:4

Solve the equations

a) \displaystyle z+3i=2z-2 b) \displaystyle (2-i) z= 3+2i
c) \displaystyle iz+2= 2z-3 d) \displaystyle (2+i) \overline{z} = 1+i
e) \displaystyle \displaystyle\frac{iz+1}{z+i} = 3+i f) \displaystyle (1+i)\overline{z}+iz = 3+5i