3.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[3.2 Polär form|Teori]]}}
+
{{Ej vald flik|[[3.2 Polär form|Teori]]}}
-
{{Mall:Vald flik|[[3.2 Övningar|Övningar]]}}
+
{{Vald flik|[[3.2 Övningar|Övningar]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Version vom 17:12, 13. Jun. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Övning 3.2:1

Givet de komplexa talen \displaystyle \,z=2+i\,, \displaystyle \,w=2+3i\, och \displaystyle \,u=-1-2i\,. Markera följande tal i det komplexa talplanet

a) \displaystyle z\, och \displaystyle \,w b) \displaystyle z+u\, och \displaystyle \,z-u
c) \displaystyle 2z+w d) \displaystyle z-\overline{w}+u

Övning 3.2:2

Rita in följande mängder i det komplexa talplanet

a) \displaystyle 0\le \mbox{Im}\, z \le 3 b) \displaystyle 0 \le \mbox{Re} \, z \le \mbox{Im}\, z \le 3
c) \displaystyle |z|=2 d) \displaystyle |z-1-i|=3
e) \displaystyle \mbox{Re}\, z = i + \bar z f) \displaystyle 2<|z-i|\le3

Övning 3.2:3

De komplexa talen \displaystyle \,1+i\,, \displaystyle \,3+2i\, och \displaystyle \,3i\, bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.

Övning 3.2:4

Bestäm beloppet av

a) \displaystyle 3+4i b) \displaystyle (2-i) + (5+3i)
c) \displaystyle (3-4i)(3+2i) d) \displaystyle \displaystyle\frac{3-4i}{3+2i}

Övning 3.2:5

Bestäm argumentet av

a) \displaystyle -10 b) \displaystyle -2+2i
c) \displaystyle (\sqrt{3} +i)(1-i) d) \displaystyle \displaystyle\frac{i}{1+i}

Övning 3.2:6

Skriv följande tal i polär form

a) \displaystyle 3 b) \displaystyle -11i
c) \displaystyle -4-4i d) \displaystyle \sqrt{10} + \sqrt{30}\,i
e) \displaystyle \displaystyle\frac{1+i\sqrt{3}}{1+i} f) \displaystyle \displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}