3.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Regenerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Ej vald flik|[[3.1 Räkning med komplexa tal|Teori]]}} |
- | {{ | + | {{Vald flik|[[3.1 Övningar|Övningar]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} |
Version vom 17:12, 13. Jun. 2008
|
Övning 3.1:1
Skriv i formen \displaystyle \,a+bi\,, där \displaystyle \,a\, och \displaystyle \,b\, är reella tal
a) | \displaystyle (5-2i)+(3+5i) | b) | \displaystyle 3i -(2-i) |
c) | \displaystyle i(2+3i) | d) | \displaystyle (3-2i)(7+5i) |
e) | \displaystyle (1+i)(2-i)^2 | f) | \displaystyle i^{\,20} + i^{\,11} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Övning 3.1:2
Skriv i formen \displaystyle \,a+bi\,, där \displaystyle \,a\, och \displaystyle \,b\, är reella tal
a) | \displaystyle \displaystyle\frac{3-2i}{1+i} | b) | \displaystyle \displaystyle\frac{3i}{4-6i} - \displaystyle\frac{1+i}{3+2i} |
c) | \displaystyle \displaystyle\frac{(2-i\sqrt{3}\,)^2}{1+i\sqrt{3}} | d) | \displaystyle \displaystyle\frac{5-\displaystyle\frac{1}{1+i}}{3i + \displaystyle\frac{i}{2-3i}} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 3.1:3
Bestäm det reella tal \displaystyle \,a\, så att uttrycket \displaystyle \ \displaystyle\frac{3+i}{2+ai}\ blir rent imaginärt (dvs. realdel lika med noll).
Svar
Lösning
Övning 3.1:4
Lös ekvationerna
a) | \displaystyle z+3i=2z-2 | b) | \displaystyle (2-i) z= 3+2i |
c) | \displaystyle iz+2= 2z-3 | d) | \displaystyle (2+i) \overline{z} = 1+i |
e) | \displaystyle \displaystyle\frac{iz+1}{z+i} = 3+i | f) | \displaystyle (1+i)\overline{z}+iz = 3+5i |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f