2.2 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Regenerate images and tabs) |
||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Ej vald flik|[[2.2 Variabelsubstitution|Teori]]}} |
- | {{ | + | {{Vald flik|[[2.2 Övningar|Övningar]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} |
Version vom 17:10, 13. Jun. 2008
|
Övning 2.2:1
Beräkna integralerna
a) | \displaystyle \displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad genom att använda substitutionen \displaystyle u=3x-1 |
b) | \displaystyle \displaystyle \int (x^2+3)^5x \, dx\quad genom att använda substitutionen \displaystyle u=x^2+3 |
c) | \displaystyle \displaystyle \int x^2 e^{x^3} \, dx\quad genom att använda substitutionen \displaystyle u=x^3 |
Övning 2.2:2
Beräkna integralerna
a) | \displaystyle \displaystyle\int_{0}^{\pi} \cos 5x\, dx | b) | \displaystyle \displaystyle\int_{0}^{1/2} e^{2x+3}\, dx |
c) | \displaystyle \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx | d) | \displaystyle \displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Övning 2.2:3
Beräkna integralerna
a) | \displaystyle \displaystyle\int 2x \sin x^2\, dx | b) | \displaystyle \displaystyle\int \sin x \cos x\, dx |
c) | \displaystyle \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx | d) | \displaystyle \displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx |
e) | \displaystyle \displaystyle\int \displaystyle\frac{3x}{x^2+1}\, dx | f) | \displaystyle \displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Övning 2.2:4
Använd formeln
för att beräkna integralerna
a) | \displaystyle \displaystyle\int \frac{dx}{x^2+4} | b) | \displaystyle \displaystyle\int \frac{dx}{(x-1)^2+3} |
c) | \displaystyle \displaystyle\int \frac{dx}{x^2+4x+8} | d) | \displaystyle \displaystyle\int \frac{x^2}{x^2 +1}\, dx |
Svar
Lösning a
Lösning b
Lösning c
Lösning d