2.2 Integration durch Substitution

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (17:24, 24. Okt. 2010) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 21 dazwischen liegende Versionen mit ein.)
Zeile 15: Zeile 15:
'''Lernziele:'''
'''Lernziele:'''
-
Nach diesem Abschnitt sollten Sie folgendes können:
+
Nach diesem Abschnitt solltest Du folgendes wissen:
-
* Die Herleitung der Formel für die Integration durch Substitution verstehen.
+
* Wie die Formel für die Integration durch Substitution hergeleitet wird.
-
* Integrale mit Integration durch Substitution lösen.
+
* Wie man Integrale mit Integration durch Substitution löst.
-
* Die Integrationsgrenzen bei der Substitution richtig ändern.
+
* Wie man die Integrationsgrenzen bei der Substitution richtig ändert.
-
* Wissen, wann Integration durch Substitution möglich ist.
+
* Wann Integration durch Substitution möglich ist.
}}
}}
-
== Integration durch Substitution ==
+
Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weißt ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den <b>Prüfungen</b> beginnen (Du findest den Link in der Student Lounge).
 +
 
 +
== A - Integration durch Substitution ==
Wenn man eine Funktion nicht direkt integrieren kann, kann man die Funktion manchmal durch eine Substitution integrieren. Die Formel für die Integration durch Substitution ist einfach die Kettenregel für Ableitungen rückwärts.
Wenn man eine Funktion nicht direkt integrieren kann, kann man die Funktion manchmal durch eine Substitution integrieren. Die Formel für die Integration durch Substitution ist einfach die Kettenregel für Ableitungen rückwärts.
-
Die Kettenregel <math>\ \frac{d}{dx}f(u(x)) = f^{\,\prime} (u(x)) \, u'(x)\ </math> kann auf Integralform geschrieben werden:
+
Die Kettenregel <math>\ \frac{d}{dx}f(u(x)) = f^{\,\prime} (u(x)) \, u'(x)\ </math> kann in Integralform geschrieben werden:
{{Abgesetzte Formel||<math>\int f^{\,\prime}(u(x)) \, u'(x) \, dx = f(u(x)) + C</math>}}
{{Abgesetzte Formel||<math>\int f^{\,\prime}(u(x)) \, u'(x) \, dx = f(u(x)) + C</math>}}
-
oder,
+
oder
<div class="regel">
<div class="regel">
Zeile 37: Zeile 39:
</div>
</div>
-
Wo ''F'' eine Stammfunktion von ''f'' ist. Wir vergleichen diese Formel mit der normalen Intagrationsformel
+
wobei ''F'' eine Stammfunktion von ''f'' ist, d.h. es gilt <math> F^{\, \prime} =f </math>.
 +
 
 +
Wir zeigen eine eigenenständige Herleitung dieser Integrationsformel: Wir beginnen mit der normalen Intagrationsformel. Der Integrand <math> f </math> hat die Stammfunktion <math> F </math> und <math> u </math> ist die Integrationsvariable
{{Abgesetzte Formel||<math>\int f(u) \, du = F(u) + C\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int f(u) \, du = F(u) + C\,\mbox{.}</math>}}
-
und sehen, dass wir die Variable <math>u(x)</math> mit der Variable <math>u</math> ersetzt haben, und den Term <math>u'(x)\, dx</math> mit <math>du</math>. Daher kann man den komplizierteren Integranden <math>f(u(x)) \, u'(x)</math> ersetzen (mit <math>x</math> als Variable) mit den einfacheren Ausdruck <math>f(u)</math> (mit <math>u</math> als Variable). Dies wird Substitution genannt, und kann angewendet werden, wenn der Integrand auf der Form <math>f(u(x)) \, u'(x)</math> ist.
+
Wir ersetzen jetzt die Integrationsvariable <math> u </math> durch die Funktion <math> u(x) </math>. Dadurch verändert sich <math> f(u) </math> zu <math> f(u(x)) </math> und <math> du </math> zu <math> d u(x) </math>. Wir wissen aber eigentlich nicht, was <math> du(x) </math> ist. In der nächsten Zeile tun wir so, als wäre <math> \frac{dx}{dx} =1 </math> wie bei "normalen" Brüchen.
 +
{{Abgesetzte Formel||<math>du(x) = \frac{dx}{dx} d u(x) = \frac{1}{dx} d u(x) d x = \frac{d}{dx} u(x) \, dx = u^{\, \prime} (x) \, dx </math>}}
-
''Hinweis'' Die Voraussetzung um die Integration durch Substitution zu verwenden ist dass <math>u(x)</math> im Intervall differenzierbar ist, für alle <math>u</math> im Intervall.
+
Also ist das unbekannte <math> du(x) </math> dasselbe wie das bekannte <math> u^{\, \prime}(x)\, dx </math>: Beim Integrieren mit der Integrationsvariable <math> x </math> wird der Integrand mit <math> u^{\, \prime}(x) </math> multipliziert. Also haben wir
 +
{{Abgesetzte Formel||<math>\int f(u) \, du = F(u) + C \textrm{ mit } u(x) \textrm{ statt } u \textrm{ ergibt } \int f(u(x)) \, u^{\, \prime}(x) \, dx = F(u(x)) + C\,\mbox{.}</math>}}
 +
 
 +
Daher kann man den komplizierteren Integranden <math>f(u(x)) \, u'(x)</math> ersetzen (mit <math>x</math> als Integrationsvariable) mit dem einfacheren Ausdruck <math>f(u)</math> (mit <math>u</math> als Integrationsvariable). Dies wird Substitution genannt, und kann angewendet werden, wenn der Integrand auf der Form <math>f(u(x)) \, u'(x)</math> ist.
 +
 
 +
Hinweis: Die Voraussetzung, um die Integration durch Substitution zu verwenden ist, dass <math>u(x)</math> im Intervall <math> (a,b) </math> differenzierbar ist.
Zeile 49: Zeile 59:
''' Beispiel 1'''
''' Beispiel 1'''
-
Berechnen Sie das Integral <math>\ \int 2 x\, e^{x^2} \, dx</math>.
+
Berechne das Integral <math>\ \int 2 x\, e^{x^2} \, dx</math>.
<br>
<br>
<br>
<br>
Wenn wir die Substitution <math>u(x)= x^2</math> machen, erhalten wir <math>u'(x)= 2x</math>. Durch die Substitution wird <math>e^{x^2}</math>, <math>e^u</math> und <math>u'(x)\,dx</math>, also <math>2x\,dx</math> wird <math>du</math>
Wenn wir die Substitution <math>u(x)= x^2</math> machen, erhalten wir <math>u'(x)= 2x</math>. Durch die Substitution wird <math>e^{x^2}</math>, <math>e^u</math> und <math>u'(x)\,dx</math>, also <math>2x\,dx</math> wird <math>du</math>
-
{{Abgesetzte Formel||<math> \int 2 x\,e^{x^2} \, dx = \int e^{x^2} \times 2x \, dx = \int e^u \, du = e^u + C = e^{x^2} + C\,\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math> \int 2 x\,e^{x^2} \, dx = \int e^{x^2} \cdot 2x \, dx = \int e^u \, du = e^u + C = e^{x^2} + C\,\mbox{.}</math>}}
</div>
</div>
Zeile 61: Zeile 71:
''' Beispiel 2'''
''' Beispiel 2'''
-
Bestimmen Sie das Integral <math>\ \int (x^3 + 1)^3 \, x^2 \, dx</math>.
+
Bestimme das Integral <math>\ \int (x^3 + 1)^3 \, x^2 \, dx</math>.
<br>
<br>
<br>
<br>
Wir substituieren, <math>u=x^3 + 1</math>.Dies ergibt <math>u'=3x^2</math>, oder <math>du= 3x^2\, dx</math>, und daher ist
Wir substituieren, <math>u=x^3 + 1</math>.Dies ergibt <math>u'=3x^2</math>, oder <math>du= 3x^2\, dx</math>, und daher ist
-
{{Abgesetzte Formel||<math>\begin{align*}\int (x^3 + 1)^3 x^2 \, dx &= \int \frac{ (x^3 + 1)^3}{3} \times 3x^2\, dx = \int \frac{u^3}{3}\, du\\[4pt] &= \frac{u^4}{12} + C = \frac{1}{12} (x^3 + 1)^4 + C\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*}\int (x^3 + 1)^3 x^2 \, dx &= \int \frac{ (x^3 + 1)^3}{3} \cdot 3x^2\, dx = \int \frac{u^3}{3}\, du\\[4pt] &= \frac{u^4}{12} + C = \frac{1}{12} (x^3 + 1)^4 + C\,\mbox{.}\end{align*}</math>}}
</div>
</div>
Zeile 73: Zeile 83:
''' Beispiel 3'''
''' Beispiel 3'''
-
Bestimmen Sie das Integral <math>\ \int \tan x \, dx\,\mbox{,}\ \ </math> wo <math>-\pi/2 < x < \pi/2</math>.
+
Bestimme das Integral <math>\ \int \tan x \, dx\,\mbox{,}\ \ </math> wo <math>-\pi/2 < x < \pi/2</math>.
<br>
<br>
<br>
<br>
-
Wir schreiben <math>\tan x</math> wir <math>\sin x/\cos x</math> machen die Substitution <math>u=\cos x</math>,
+
Wir schreiben <math>\tan x</math> wie <math>\sin x/\cos x</math> und machen die Substitution <math>u=\cos x</math>,
{{Abgesetzte Formel||<math>\begin{align*}\int \tan x \, dx &= \int \frac{\sin x}{\cos x} \, dx = \left[\,\begin{align*} u &= \cos x\\ u' &= - \sin x\\ du &= - \sin x \, dx \end{align*}\,\right]\\[4pt] &= \int -\frac{1}{u}\, du = - \ln |u| +C = -\ln |\cos x| + C\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\begin{align*}\int \tan x \, dx &= \int \frac{\sin x}{\cos x} \, dx = \left[\,\begin{align*} u &= \cos x\\ u' &= - \sin x\\ du &= - \sin x \, dx \end{align*}\,\right]\\[4pt] &= \int -\frac{1}{u}\, du = - \ln |u| +C = -\ln |\cos x| + C\,\mbox{.}\end{align*}</math>}}
Zeile 82: Zeile 92:
</div>
</div>
 +
== B - Die Integrationsgrenzen bei Substitution ==
-
== Die Integrationsgrenzen bei Substitution ==
+
Wenn man bestimmte Integrale berechnet, gibt es zwei Methoden, mit den Integrationsgrenzen umzugehen. Entweder substituiert man <math> u = u(x) </math>, berechnet eine Stammfunktion in u und ersetzt danach die neue Variable mit der alten oder man ändert die Integrationsgrenzen während der Integration. Das folgende Beispiel zeigt die beiden Methoden.
-
 
+
-
Wenn man bestimmte Integrale berechnet, gibt es zwei Methoden, mit den Integrationsgrenzen umzugehen. Entweder berechnet man das Integral und ersetzt danach die neue Variable mit der alten, oder man ändert die Integrationsgrenzen während der Integration. Das folgende Beispiel zeigt die beiden Methoden.
+
<div class="exempel">
<div class="exempel">
''' Beispiel 4'''
''' Beispiel 4'''
-
Berechnen Sie das Integral <math>\ \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx</math>.
+
Berechne das Integral <math>\ \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx</math>.
'' Methode 1''
'' Methode 1''
-
Wir substituieren <math>u=e^x</math> , und dies ergibt <math>u'= e^x</math> und <math>du= e^x\,dx</math>
+
Wir substituieren <math>u=e^x</math> , und dies ergibt <math>u'= e^x</math> und <math> du= e^x\,dx = u \, dx </math> bzw <math> dx = \frac{1}{u} \, du </math>.
-
{{Abgesetzte Formel||<math>\begin{align*}\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx &= \int_{x=0}^{\,x=2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{x=0}^{x=2} = \Bigl[\,\ln (1+ e^x)\,\Bigr]_{0}^{2}\\[4pt] &= \ln (1+ e^2) - \ln 2 = \ln \frac{1+ e^2}{2}\,\mbox {.}\end{align*}</math>}}
+
Wir ermitteln eine Stammfunktion für die Integration mit der Integrationsvariable <math> u </math>
-
Wir müssen die Integrationsgrenzen hier wie <math>x = 0</math> und <math>x = 2</math> schreiben, nachdem <math>x</math> nicht die Integrationsvariable ist. Folgende Schreibweise ist falsch:
+
{{Abgesetzte Formel||<math>\int \frac{e^x}{1 + e^x} \, dx = \int\frac{u}{1 + u} \, \frac{1}{u} \, du = \int \frac{1}{1 + u} \, du = \ln |1+u| </math>}}
-
{{Abgesetzte Formel||<math>\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{0}^{2} \frac{1}{1 + u} \, du \quad \text{ etc.}</math>}}
+
Jetzt schreiben wir wieder <math> u(x) </math> statt <math> u </math> und setzen die Integrationsgrenzen ein.
 +
 
 +
{{Abgesetzte Formel||<math> \Bigl[\,\ln |1+ u(x) |\,\Bigr]_{x=0}^{x=2} = \Bigl[\,\ln (1+ e^x)\,\Bigr]_{0}^{2} = \ln (1+ e^2) - \ln 2 = \ln \frac{1+ e^2}{2}</math>}}
'' Methode 2''
'' Methode 2''
-
Wir substituieren <math>u=e^x</math> und dies ergibt <math>u'= e^x</math> und <math>du= e^x\, dx</math>. Die Integrationsgrenze <math>x=0</math> entspricht <math>u=e^0 = 1</math> und <math>x=2</math> entspricht <math>u=e^2</math>
+
Wir substituieren <math>u=e^x</math> und dies ergibt <math>u'= e^x</math> und <math>du= e^x\, dx</math>. Die Integrationsgrenzen verändern sich durch die Substitution: Wenn <math> x </math> von 0 bis 2 läuft, läuft <math> u=u(x) </math> von <math> u(0) = e^0=1 </math> bis <math>u(2)=e^2</math>.
{{Abgesetzte Formel||<math>\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{1}^{\,e^2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{1}^{e^2} = \ln (1+ e^2) - \ln 2 = \ln\frac{1+ e^2}{2}\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{1}^{\,e^2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{1}^{e^2} = \ln (1+ e^2) - \ln 2 = \ln\frac{1+ e^2}{2}\,\mbox{.}</math>}}
Zeile 114: Zeile 125:
''' Beispiel 5'''
''' Beispiel 5'''
-
Bestimmen Sie das Integral <math> \ \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx</math>.
+
Bestimme das Integral <math> \ \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx</math>.
<br>
<br>
<br>
<br>
Zeile 132: Zeile 143:
''' Beispiel 6'''
''' Beispiel 6'''
-
Betrachten Sie folgende Rechnungen:
+
Betrachte folgende Rechnungen, bei denen sich ein Fehler eingeschlichen hat.
{{Abgesetzte Formel||<math>\int_{-\pi/2}^{\pi/2} \frac{\cos x}{\sin^2 x}\, dx = \left[\,\begin{align*} &u = \sin x\\ &du = \cos x \, dx\\ &u(-\pi/2) = -1\\ &u (\pi/2) = 1\end{align*}\,\right ] = \int_{-1}^{1} \frac{1}{u^2} \, du = \Bigl[\, -\frac{1}{u}\, \Bigr]_{-1}^{1} = -1 - 1 = -2\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int_{-\pi/2}^{\pi/2} \frac{\cos x}{\sin^2 x}\, dx = \left[\,\begin{align*} &u = \sin x\\ &du = \cos x \, dx\\ &u(-\pi/2) = -1\\ &u (\pi/2) = 1\end{align*}\,\right ] = \int_{-1}^{1} \frac{1}{u^2} \, du = \Bigl[\, -\frac{1}{u}\, \Bigr]_{-1}^{1} = -1 - 1 = -2\,\mbox{.}</math>}}
Zeile 138: Zeile 149:
{| width="100%"
{| width="100%"
| width="95%" |
| width="95%" |
-
Diese Rechnung ist aber falsch, nachdem <math>f(u)=1/u^2</math> nicht im ganzen Intervall <math>[-1,1]</math> definiert ist (nicht wenn <math>x=0</math>).
+
Die Rechnung muss falsch sein, weil links ein Integral steht mit einem positiven Integrand. Das Integral wird also positiv sein. Auf der rechten Seite steht jedoch eine negative Zahl.
-
Es ist notwendig, dass die Funktion <math>f(u(x))</math> überall im Intervall definiert und kontinuierlich ist. Ansonsten wird die Substitution <math>u=u(x)</math> nicht gültig sein.
+
Der Fehler bei der Rechnung ist, dass die Substitution angewendet wurde f&uuml;r <math>f(u)=1/u^2</math> und diese Funktion nicht im ganzen Intervall <math>[-1,1]</math> definiert ist (<math>f(0)</math> ist nicht definiert: Division durch Null).
 +
 
 +
Wenn man die Substitutionsregel anwenden m&ouml;chte, muss die &auml;ussere Funktion <math> f </math> stetig sein und die innere Funktion <math> u </math> stetig differenzierbar.
| width="5%" |
| width="5%" |
||
||
Zeile 146: Zeile 159:
||{{:2.2 - Bild - Die Kurve von f(u) = 1/u²}}
||{{:2.2 - Bild - Die Kurve von f(u) = 1/u²}}
|-
|-
-
||<small>Graph of ''f''(''u'') = 1/''u''²</small>
+
||<small>Graph von ''f''(''u'') = 1/''u''²</small>
|}
|}
|}
|}
</div>
</div>
 +
<br><br>
 +
 +
Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor <skype style="call" action="call">ombTutor</skype> <skype style="chat" action="chat">ombTutor</skype>
 +
 +
Keine Fragen mehr? Dann mache weiter mit den '''[[2.2 Übungen|Übungen]]''' .

Aktuelle Version

       Theorie          Übungen      

Inhalt:

  • Integration durch Substitution

Lernziele:

Nach diesem Abschnitt solltest Du folgendes wissen:

  • Wie die Formel für die Integration durch Substitution hergeleitet wird.
  • Wie man Integrale mit Integration durch Substitution löst.
  • Wie man die Integrationsgrenzen bei der Substitution richtig ändert.
  • Wann Integration durch Substitution möglich ist.

Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weißt ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den Prüfungen beginnen (Du findest den Link in der Student Lounge).

A - Integration durch Substitution

Wenn man eine Funktion nicht direkt integrieren kann, kann man die Funktion manchmal durch eine Substitution integrieren. Die Formel für die Integration durch Substitution ist einfach die Kettenregel für Ableitungen rückwärts.

Die Kettenregel \displaystyle \ \frac{d}{dx}f(u(x)) = f^{\,\prime} (u(x)) \, u'(x)\ kann in Integralform geschrieben werden:

\displaystyle \int f^{\,\prime}(u(x)) \, u'(x) \, dx = f(u(x)) + C

oder

\displaystyle \int f(u(x)) \, u'(x) \, dx = F (u(x)) + C\,\mbox{,}

wobei F eine Stammfunktion von f ist, d.h. es gilt \displaystyle F^{\, \prime} =f .

Wir zeigen eine eigenenständige Herleitung dieser Integrationsformel: Wir beginnen mit der normalen Intagrationsformel. Der Integrand \displaystyle f hat die Stammfunktion \displaystyle F und \displaystyle u ist die Integrationsvariable

\displaystyle \int f(u) \, du = F(u) + C\,\mbox{.}

Wir ersetzen jetzt die Integrationsvariable \displaystyle u durch die Funktion \displaystyle u(x) . Dadurch verändert sich \displaystyle f(u) zu \displaystyle f(u(x)) und \displaystyle du zu \displaystyle d u(x) . Wir wissen aber eigentlich nicht, was \displaystyle du(x) ist. In der nächsten Zeile tun wir so, als wäre \displaystyle \frac{dx}{dx} =1 wie bei "normalen" Brüchen.

\displaystyle du(x) = \frac{dx}{dx} d u(x) = \frac{1}{dx} d u(x) d x = \frac{d}{dx} u(x) \, dx = u^{\, \prime} (x) \, dx

Also ist das unbekannte \displaystyle du(x) dasselbe wie das bekannte \displaystyle u^{\, \prime}(x)\, dx : Beim Integrieren mit der Integrationsvariable \displaystyle x wird der Integrand mit \displaystyle u^{\, \prime}(x) multipliziert. Also haben wir

\displaystyle \int f(u) \, du = F(u) + C \textrm{ mit } u(x) \textrm{ statt } u \textrm{ ergibt } \int f(u(x)) \, u^{\, \prime}(x) \, dx = F(u(x)) + C\,\mbox{.}

Daher kann man den komplizierteren Integranden \displaystyle f(u(x)) \, u'(x) ersetzen (mit \displaystyle x als Integrationsvariable) mit dem einfacheren Ausdruck \displaystyle f(u) (mit \displaystyle u als Integrationsvariable). Dies wird Substitution genannt, und kann angewendet werden, wenn der Integrand auf der Form \displaystyle f(u(x)) \, u'(x) ist.

Hinweis: Die Voraussetzung, um die Integration durch Substitution zu verwenden ist, dass \displaystyle u(x) im Intervall \displaystyle (a,b) differenzierbar ist.


Beispiel 1

Berechne das Integral \displaystyle \ \int 2 x\, e^{x^2} \, dx.

Wenn wir die Substitution \displaystyle u(x)= x^2 machen, erhalten wir \displaystyle u'(x)= 2x. Durch die Substitution wird \displaystyle e^{x^2}, \displaystyle e^u und \displaystyle u'(x)\,dx, also \displaystyle 2x\,dx wird \displaystyle du

\displaystyle \int 2 x\,e^{x^2} \, dx = \int e^{x^2} \cdot 2x \, dx = \int e^u \, du = e^u + C = e^{x^2} + C\,\mbox{.}

Beispiel 2

Bestimme das Integral \displaystyle \ \int (x^3 + 1)^3 \, x^2 \, dx.

Wir substituieren, \displaystyle u=x^3 + 1.Dies ergibt \displaystyle u'=3x^2, oder \displaystyle du= 3x^2\, dx, und daher ist

\displaystyle \begin{align*}\int (x^3 + 1)^3 x^2 \, dx &= \int \frac{ (x^3 + 1)^3}{3} \cdot 3x^2\, dx = \int \frac{u^3}{3}\, du\\[4pt] &= \frac{u^4}{12} + C = \frac{1}{12} (x^3 + 1)^4 + C\,\mbox{.}\end{align*}

Beispiel 3

Bestimme das Integral \displaystyle \ \int \tan x \, dx\,\mbox{,}\ \ wo \displaystyle -\pi/2 < x < \pi/2.

Wir schreiben \displaystyle \tan x wie \displaystyle \sin x/\cos x und machen die Substitution \displaystyle u=\cos x,

\displaystyle \begin{align*}\int \tan x \, dx &= \int \frac{\sin x}{\cos x} \, dx = \left[\,\begin{align*} u &= \cos x\\ u' &= - \sin x\\ du &= - \sin x \, dx \end{align*}\,\right]\\[4pt] &= \int -\frac{1}{u}\, du = - \ln |u| +C = -\ln |\cos x| + C\,\mbox{.}\end{align*}

B - Die Integrationsgrenzen bei Substitution

Wenn man bestimmte Integrale berechnet, gibt es zwei Methoden, mit den Integrationsgrenzen umzugehen. Entweder substituiert man \displaystyle u = u(x) , berechnet eine Stammfunktion in u und ersetzt danach die neue Variable mit der alten oder man ändert die Integrationsgrenzen während der Integration. Das folgende Beispiel zeigt die beiden Methoden.

Beispiel 4 Berechne das Integral \displaystyle \ \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx.


Methode 1

Wir substituieren \displaystyle u=e^x , und dies ergibt \displaystyle u'= e^x und \displaystyle du= e^x\,dx = u \, dx bzw \displaystyle dx = \frac{1}{u} \, du .

Wir ermitteln eine Stammfunktion für die Integration mit der Integrationsvariable \displaystyle u

\displaystyle \int \frac{e^x}{1 + e^x} \, dx = \int\frac{u}{1 + u} \, \frac{1}{u} \, du = \int \frac{1}{1 + u} \, du = \ln |1+u|

Jetzt schreiben wir wieder \displaystyle u(x) statt \displaystyle u und setzen die Integrationsgrenzen ein.

\displaystyle \Bigl[\,\ln |1+ u(x) |\,\Bigr]_{x=0}^{x=2} = \Bigl[\,\ln (1+ e^x)\,\Bigr]_{0}^{2} = \ln (1+ e^2) - \ln 2 = \ln \frac{1+ e^2}{2}


Methode 2

Wir substituieren \displaystyle u=e^x und dies ergibt \displaystyle u'= e^x und \displaystyle du= e^x\, dx. Die Integrationsgrenzen verändern sich durch die Substitution: Wenn \displaystyle x von 0 bis 2 läuft, läuft \displaystyle u=u(x) von \displaystyle u(0) = e^0=1 bis \displaystyle u(2)=e^2.

\displaystyle \int_{0}^{2} \frac{e^x}{1 + e^x} \, dx = \int_{1}^{\,e^2} \frac{1}{1 + u} \, du = \Bigl[\,\ln |1+ u |\,\Bigr]_{1}^{e^2} = \ln (1+ e^2) - \ln 2 = \ln\frac{1+ e^2}{2}\,\mbox{.}

Beispiel 5

Bestimme das Integral \displaystyle \ \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx.

Durch die Substitution \displaystyle u=\sin x erhalten wir \displaystyle du=\cos x\,dx und die Integrationsgrenzen sind daher \displaystyle u=\sin 0=0 und \displaystyle u=\sin(\pi/2)=1. Das Integral ist daher

\displaystyle \int_{0}^{\pi/2} \sin^3 x\,\cos x \, dx = \int_{0}^{1} u^3\,du = \Bigl[\,\tfrac{1}{4}u^4\,\Bigr]_{0}^{1} = \tfrac{1}{4} - 0 = \tfrac{1}{4}\,\mbox{.}


[Image]

Das linke Bild zeigt die Funktion sin³x cos x und die rechte Figur zeigt die Funktion u³ die wir nach der Substitution erhalten. Durch die Substitution erhalten wir ein neues Intervall. Der Wert des Integrals ändert sich aber nicht.

Beispiel 6

Betrachte folgende Rechnungen, bei denen sich ein Fehler eingeschlichen hat.

\displaystyle \int_{-\pi/2}^{\pi/2} \frac{\cos x}{\sin^2 x}\, dx = \left[\,\begin{align*} &u = \sin x\\ &du = \cos x \, dx\\ &u(-\pi/2) = -1\\ &u (\pi/2) = 1\end{align*}\,\right ] = \int_{-1}^{1} \frac{1}{u^2} \, du = \Bigl[\, -\frac{1}{u}\, \Bigr]_{-1}^{1} = -1 - 1 = -2\,\mbox{.}

Die Rechnung muss falsch sein, weil links ein Integral steht mit einem positiven Integrand. Das Integral wird also positiv sein. Auf der rechten Seite steht jedoch eine negative Zahl.

Der Fehler bei der Rechnung ist, dass die Substitution angewendet wurde für \displaystyle f(u)=1/u^2 und diese Funktion nicht im ganzen Intervall \displaystyle [-1,1] definiert ist (\displaystyle f(0) ist nicht definiert: Division durch Null).

Wenn man die Substitutionsregel anwenden möchte, muss die äussere Funktion \displaystyle f stetig sein und die innere Funktion \displaystyle u stetig differenzierbar.

[Image]

Graph von f(u) = 1/u²



Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor My status My status

Keine Fragen mehr? Dann mache weiter mit den Übungen .