3.3 Potenzen und Wurzeln

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:09, 5. Okt. 2010) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 26 dazwischen liegende Versionen mit ein.)
Zeile 18: Zeile 18:
'''Lernziele:'''
'''Lernziele:'''
-
Nach diesem Abschnitt sollten Sie folgendes können:
+
Nach diesem Abschnitt solltest Du folgendes wissen:
-
* Potenzen von komplexen Zahlen mit den Moivreshen Satz lösen.
+
* Wie man Potenzen von komplexen Zahlen mit dem Moivreschen Satz löst.
-
* Wurzeln von komplexen Zahlen berechnen indem man die Zahl auf Polarform bringt.
+
* Wie man Wurzeln von komplexen Zahlen berechnet, indem man die Zahl in Polarform bringt.
-
* Komplexe quadratische Ausdrücke quadratisch Ergänzen.
+
* Wie man komplexe quadratische Ausdrücke quadratisch ergänzt.
-
* Komplexe quadratische Gleichungen lösen.
+
* Wie man komplexe quadratische Gleichungen löst.
}}
}}
-
== Moivrescher Satz==
 
-
Die Rechenregeln <math>\ \arg (zw) = \arg z + \arg w\ </math> and <math>\ |\,zw\,| = |\,z\,|\,|\,w\,|\ </math> bedeuten, dass
+
Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weißt ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den <b>Prüfungen</b> beginnen (Du findest den Link in der Student Lounge).
-
{{Abgesetzte Formel||<math>\biggl\{\begin{align*}&\arg (z\times z) = \arg z + \arg z \\ &|\,z\times z\,| = |\,z\,|\times|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{etc.}</math>}}
+
== A - Moivrescher Satz==
 +
Die Rechenregeln <math>\ \arg (zw) = \arg z + \arg w\ </math> und <math>\ |\,zw\,| = |\,z\,|\,|\,w\,|\ </math> bedeuten, dass
-
Für eine beliebige komplexe Zahl <math>z=r\,(\cos \alpha +i\,\sin \alpha)</math>, gilt daher, dass
+
{{Abgesetzte Formel||<math>\biggl\{\begin{align*}&\arg (z\cdot z) = \arg z + \arg z \\ &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{etc.}</math>}}
 +
 
 +
 
 +
Für eine beliebige komplexe Zahl <math>z=r\,(\cos \alpha +i\,\sin \alpha)</math> gilt daher, dass
{{Abgesetzte Formel||<math>z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}</math>}}
-
Falls <math>|\,z\,|=1</math>, (Also dass <math>z</math> am Einheitskreis liegt) erhalten wir den Sonderfall
+
Falls <math>|\,z\,|=1</math> (also, dass <math>z</math> am Einheitskreis liegt), erhalten wir den Sonderfall
<div class="regel">
<div class="regel">
-
{{Abgesetzte Formel||<math>(\cos \alpha +i\,\sin \alpha)^n = \cos n\alpha +i\,\sin n\alpha\,\mbox{,}</math>}}
+
{{Abgesetzte Formel||<math>(\cos \alpha +i\,\sin \alpha)^n = \cos n\alpha +i\,\sin n\alpha\,\mbox{.}</math>}}
</div>
</div>
-
Diese Regel nennt man den ''Moivreschen Satz''. Wir wir sehen werden, ist diese Regel sehr wichtig, wenn man Potenzen und Wurzeln von komplexen Zahlen berechnet.
+
Diese Regel nennt man den ''Moivreschen Satz''. Wie wir sehen werden, ist diese Regel sehr wichtig, wenn man Potenzen und Wurzeln von komplexen Zahlen berechnet.
Zeile 49: Zeile 52:
-
Wenn <math>z = \frac{1+i}{\sqrt2}</math>, bestimmen Sie <math>z^3</math> und <math>z^{100}</math>.
+
Bestimme <math>z^3</math> und <math>z^{100}</math> für <math>z = \frac{1+i}{\sqrt2}</math> .
-
Wir schreiben <math>z</math> in Polarform <math>\ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\times \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ </math> und verwenden den Moivreschen Satz
+
Wir schreiben <math>z</math> in Polarform <math>\ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ </math> und verwenden den Moivreschen Satz
-
{{Abgesetzte Formel||<math>\begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{,}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}</math>}}
</div>
</div>
Zeile 61: Zeile 64:
''' Beispiel 2'''
''' Beispiel 2'''
-
Normalerweise würden wir hier die binomische Formel benutzen
+
Mit der binomischen Formel können wir den Ausdruck wie folgt erläutern:
-
{{Abgesetzte Formel||<math>\begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\,\mbox{,}\end{align*}</math>}}
-
und mit den Moivreschen Satz erhalten wir
+
aber wir können auch den Moivreschen Satz benutzen. Dann erhalten wir:
{{Abgesetzte Formel||<math>(\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>(\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}</math>}}
-
Nachdem die beiden Ausdrücke gleich sind, erhalten wir, indem wir die Real- und Imaginärteile gleich setzen, die bekannten trigonometrischen Identitäten
+
Da die beiden Ausdrücke gleich sind, erhalten wir, indem wir die Real- und Imaginärteile gleichsetzen, die bekannten trigonometrischen Identitäten
Zeile 80: Zeile 83:
-
Vereinfachen Sie <math>\ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,</math>.
+
Vereinfache <math>\ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,</math>.
Wir schreiben die Zahlen <math>\sqrt{3}+i</math>, <math>1+i\sqrt{3}</math> und <math>1+i</math> in Polarform
Wir schreiben die Zahlen <math>\sqrt{3}+i</math>, <math>1+i\sqrt{3}</math> und <math>1+i</math> in Polarform
Zeile 88: Zeile 91:
Nach dem Moivreschen Satz erhalten wir
Nach dem Moivreschen Satz erhalten wir
-
{{Abgesetzte Formel||<math>\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \, (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}</math>}}
+
{{Abgesetzte Formel||<math>\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \, (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}\:</math>.}}
Diesen Ausdruck können wir weiter vereinfachen, indem wir die Multiplikations- und Divisionsregeln für komplexe Zahlen in Polarform verwenden
Diesen Ausdruck können wir weiter vereinfachen, indem wir die Multiplikations- und Divisionsregeln für komplexe Zahlen in Polarform verwenden
Zeile 97: Zeile 100:
-
== Die ''n''te Wurzel von komplexen Zahlen ==
+
== B - ''n''te Wurzeln von komplexen Zahlen ==
-
Eine komplexe <math>z</math> wird die ''n''te Wurzel von <math>w</math> genannt falls
+
Eine komplexe Zahl <math>z</math> wird ''n''te Wurzel von <math>w</math> genannt, falls
<div class="regel">
<div class="regel">
{{Abgesetzte Formel||<math>z^n= w \mbox{.}</math>}}
{{Abgesetzte Formel||<math>z^n= w \mbox{.}</math>}}
</div>
</div>
-
Die Lösungen dieser Wurzelgleichung erhält man, indem man beide Zahlen auf Polarform bringt, und deren Betrag und Argument vergleicht.
+
Lösungen dieser Wurzelgleichung erhält man, indem man beide Zahlen in Polarform bringt und deren Betrag und Argument vergleicht.
-
Gegeben eine Zahl <math>w=|\,w\,|\,(\cos \theta + i\,\sin \theta)</math> nimmt man an, dass <math>z=r\,(\cos \alpha + i\, \sin \alpha)</math> und erhält so die Gleichung
+
Ist eine Zahl <math> w=|\,w\,|\,(\cos \theta + i\,\sin \theta) </math> gegeben, nimmt man an, dass <math>z=r\,(\cos \alpha + i\, \sin \alpha)</math> und erhält so die Gleichung
{{Abgesetzte Formel||<math>r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}</math>}}
{{Abgesetzte Formel||<math>r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}</math>}}
wo wir den Moivreschen Satz auf der linken Seite angewendet haben. Vergleichen wir das Argument und den Betrag der beiden Seiten, erhalten wir
wo wir den Moivreschen Satz auf der linken Seite angewendet haben. Vergleichen wir das Argument und den Betrag der beiden Seiten, erhalten wir
-
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\times 2\pi\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}\end{align*}</math>}}
-
Beachten Sie hier, dass wir ein Multipel von <math>2\pi</math> zum Argument addiert haben, um alle Lösungen zu erhalten.
+
Beachte hier, dass wir ein Vielfaches von <math>2\pi</math> zum Argument addiert haben, um alle Lösungen zu erhalten.
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}</math>}}
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}</math>}}
-
Wir erhalten also ''einen'' Wert für <math>r</math>, aber unendlich viele Werte für <math>\alpha</math>. Hingegen gibt es aber nicht unendlich viele Lösungen dieser Gleichung. Für Werte von <math>k</math> zwischen <math>k = 0</math> und <math>k = n - 1</math> erhalten wir verschiedene Argumente für <math>z</math>, und daher verschiedene Zahlen <math>z</math>. Für andere Werte von <math>k</math>, wiederholen wir nur die schon bekannten Lösungen, nachdem die Funktionen <math>\cos \theta</math> und <math>\sin \theta</math> periodisch sind, und die Periodenlänge <math>2 \pi</math> haben. Also hat eine Gleichung auf der Form <math>z^n=w</math> genau <math>n</math> Wurzeln.
+
Wir erhalten also ''einen'' Wert für <math>r</math>, aber unendlich viele Werte für <math>\alpha</math>. Trotzdem gibt es nicht unendlich viele Lösungen dieser Gleichung. Für Werte von <math>k</math> zwischen <math>k = 0</math> und <math>k = n - 1</math> erhalten wir verschiedene Argumente für <math>z</math> und daher verschiedene Zahlen <math>z</math>. Für andere Werte von <math>k</math> wiederholen wir nur die schon bekannten Lösungen, da die Funktionen <math>\cos \theta</math> und <math>\sin \theta</math> periodisch sind und die Periodenlänge <math>2 \pi</math> haben. Also hat eine Gleichung mit der Form <math>z^n=w</math> genau <math>n</math> Wurzeln.
 +
 
 +
Hinweis: Beachte, dass die Argumente der Lösungen sich immer um <math>2\pi/n</math> unterscheiden. Also sind die Lösungen gleichförmig auf dem Kreis mit dem Radius <math>\sqrt[\scriptstyle n]{|w|}</math> verteilt und bilden ein ''n''-seitiges Polygon.
-
''Kommentar''. Beachten Sie dass das Argument der Lösungen sich immer mit <math>2\pi/n</math> unterscheidet. Also sind die Lösungen uniform auf den Kreis mit den Radius <math>\sqrt[\scriptstyle n]{|w|}</math> verteilt, und bilden ein ''n''-Seitiges Polygon.
 
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
'''Beispiel 4'''
-
Lösen Sie die Gleichung <math>\ z^4= 16\,i\,</math>.
+
Löse die Gleichung <math>\ z^4= 16\,i\,</math>.
-
Wir schreiben <math>z</math> and <math>16\,i</math> in Polarform
+
Wir schreiben <math>z</math> und <math>16\,i</math> in Polarform
*<math>\quad z=r\,(\cos \alpha + i\,\sin \alpha)\,</math>,
*<math>\quad z=r\,(\cos \alpha + i\,\sin \alpha)\,</math>,
*<math>\quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}</math>.
*<math>\quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}</math>.
Zeile 136: Zeile 140:
{{Abgesetzte Formel||<math>r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}</math>}}
-
Vergleichen wir das Argument und den Betrag der beiden Seiten,erhalten wir
+
Vergleichen wir das Argument und den Betrag der beiden Seiten, erhalten wir
-
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\times 2\pi,\end{align*}\qquad\text{i.e.}\qquad\biggl\{\begin{align*} r &= \sqrt[\scriptstyle 4]{16}= 2, \\ \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3.\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\cdot 2\pi,\end{align*}\qquad\text{d.h.}\qquad\biggl\{\begin{align*} r &= \sqrt[\scriptstyle 4]{16}= 2, \\ \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3.\end{align*}</math>}}
{| width="100%"
{| width="100%"
Zeile 153: Zeile 157:
-
==Exponentialform der komplexen Zahlen==
+
== C - Exponentialform der komplexen Zahlen==
-
Wenn wir <math>i</math> als eine normale Zahl betrachten, und die komplexe Zahl <math>z</math> wie eine Funktion von nur <math>\alpha</math> betrachten( wo <math>r</math> also konstant ist),
+
Wenn wir <math>i</math> als eine normale Zahl betrachten und die komplexe Zahl <math>z</math> wie eine Funktion von nur <math>\alpha</math> betrachten (in der <math>r</math> also konstant ist), ergibt sich
{{Abgesetzte Formel||<math>f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)</math>}}
{{Abgesetzte Formel||<math>f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)</math>}}
-
erhalten wir durch wiederholte Ableitung
+
und wir erhalten durch wiederholte Ableitung
{{Abgesetzte Formel||<math>\begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{etc.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{etc.}\end{align*}</math>}}
-
Die einzige reellen Funktionen die die dies erfüllen, sind Funktionen auf der Form <math>f(x)= e^{\,kx}</math>. Daher ist die folgende Definition natürlich;
+
Die einzigen reellen Funktionen, die dies erfüllen, sind Funktionen in der Form <math>f(x)= e^{\,kx}</math>. Daher stammt folgende Definition:
{{Abgesetzte Formel||<math>e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}</math>}}
-
Dies ist auch eine Generalisierung der reellen Exponentialfunktion für komplexe Zahlen. Substituieren wir <math>z=a+ib</math> erhalten wir
+
Dies ist auch eine Verallgemeinerung der reellen Exponentialfunktion für komplexe Zahlen. Ersetzen wir <math>z=a+ib</math> erhalten wir
{{Abgesetzte Formel||<math>e^{\,z} = e^{\,a+ib} = e^{\,a} \, e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>e^{\,z} = e^{\,a+ib} = e^{\,a} \, e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}</math>}}
-
Die Definition von <math>e^{\,z}</math> kann wie eine Kurzform von der Polarform verwendet werden, nachdem <math>z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,</math>.
+
Die Definition von <math>e^{\,z}</math> kann wie eine Kurzform der Polarform verwendet werden, da <math>z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,</math>.
Zeile 178: Zeile 182:
''' Beispiel 5'''
''' Beispiel 5'''
-
Für eine reelle Zahl <math>z</math> ist die Definition dieselbe wir für die reelle Exponentialfunktion. Nachdem <math>z=a+0\times i</math> erhalten wir
+
Für eine reelle Zahl <math>z</math> ist die Definition dieselbe wie für die reelle Exponentialfunktion. Da <math>z=a+0\cdot i</math> erhalten wir
-
{{Abgesetzte Formel||<math>e^{\,z} = e^{\,a+0\times i} = e^a (\cos 0 + i \sin 0) = e^a \times 1 = e^a\,\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}</math>}}
</div>
</div>
Zeile 186: Zeile 190:
''' Beispiel 6'''
''' Beispiel 6'''
-
Eine weitere Folge dieser Definition erhalten wir durch den Moivrischen Satz
+
Eine weitere Folgerung aus dieser Definition erhalten wir durch den Moivreschen Satz.
-
{{Abgesetzte Formel||<math>\bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}\,\mbox{,}</math>}}
+
{{Abgesetzte Formel||<math>\bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}</math>}}
-
und dies erinnert uns an die wohlbekannte Rechenregel für Potenzen,
+
Das erinnert uns an die wohlbekannte Rechenregel für Potenzen.
-
{{Abgesetzte Formel||<math>\left(a^x\right)^y = a^{x\,y}\,\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>\left(a^x\right)^y = a^{x\,y}</math>}}
</div>
</div>
Zeile 200: Zeile 204:
-
Von den Definitionen oben, erhalten wir die Formel
+
Mit den Definitionen oben erhalten wir die Formel
{{Abgesetzte Formel||<math>e^{\pi\,i} = \cos \pi + i \sin \pi = -1</math>}}
{{Abgesetzte Formel||<math>e^{\pi\,i} = \cos \pi + i \sin \pi = -1</math>}}
-
Diese Berühmte Formel wurde von Euler in den 18 Jahrhundert entdeckt.
+
Diese berühmte Formel wurde von Euler zu Beginn des 18. Jahrhunderts entdeckt.
</div>
</div>
Zeile 211: Zeile 215:
''' Beispiel 8'''
''' Beispiel 8'''
-
Lösen Sie die Gleichung <math>\ (z+i)^3 = -8i</math>.
+
Löse die Gleichung <math>\ (z+i)^3 = -8i</math>.
-
Wir lassen <math>w = z + i</math> sein. Wir erhalten so die Gleichung <math>\ w^3=-8i\,</math>. Wir bringen als erster Schritt <math>w</math> und <math>-8i</math> in Polarform
+
Wir lassen <math>w = z + i</math> sein. Wir erhalten so die Gleichung <math>\ w^3=-8i\,</math>. Wir bringen als ersten Schritt <math>w</math> und <math>-8i</math> in Polarform
*<math>\quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}</math>
*<math>\quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}</math>
*<math>\quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}</math>
*<math>\quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}</math>
-
In Polarform lautet die Gleichung <math>\ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ </math>; Vergleichen wir das Argument und den Betrag der rechten und linken Seite, erhalten wir
+
In Polarform lautet die Gleichung <math>\ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ </math>. Vergleichen wir das Argument und den Betrag der rechten und linken Seite, erhalten wir
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
Zeile 227: Zeile 231:
*<math>\quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}</math>
*<math>\quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}</math>
-
also <math>z_1 = 2i-i=i</math>, <math>z_2 = - \sqrt{3}-2i</math> und <math>z_3 = \sqrt{3}-2i</math>.
+
also sind <math>z_1 = 2i-i=i</math>, <math>z_2 = - \sqrt{3}-2i</math> und <math>z_3 = \sqrt{3}-2i</math>.
</div>
</div>
Zeile 235: Zeile 239:
-
Lösen Sie die Gleichung <math>\ z^2 = \overline{z}\,</math>.
+
Löse die Gleichung <math>\ z^2 = \overline{z}\,</math>.
Wenn für <math>z=a+ib</math>, <math>|\,z\,|=r</math> und <math>\arg z = \alpha</math> ist, ist für <math>\overline{z}= a-ib</math> <math>|\,\overline{z}\,|=r</math> und <math>\arg \overline{z} = - \alpha</math>. Also ist <math>z=r\,e^{i\alpha}</math> und <math>\overline{z} = r\,e^{-i\alpha}</math>. Die Gleichung lautet also
Wenn für <math>z=a+ib</math>, <math>|\,z\,|=r</math> und <math>\arg z = \alpha</math> ist, ist für <math>\overline{z}= a-ib</math> <math>|\,\overline{z}\,|=r</math> und <math>\arg \overline{z} = - \alpha</math>. Also ist <math>z=r\,e^{i\alpha}</math> und <math>\overline{z} = r\,e^{-i\alpha}</math>. Die Gleichung lautet also
-
{{Abgesetzte Formel||<math>(r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{or}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{,}</math>}}
+
{{Abgesetzte Formel||<math>(r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{oder}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{.}</math>}}
-
Wir sehen direkt dass <math>r=0</math> eine der Lösungen ist, und daher die Lösung <math>z=0</math> ergibt. Nehmen wir an dass <math>r\not=0</math> erhalten wir die Gleichung <math>\ r\,e^{3i\alpha} = 1\,</math>. Vergleichen wir hier Betrag und Argument, erhalten wir
+
Wir sehen direkt, dass <math>r=0</math> eine der Lösungen ist und daher die Lösung <math>z=0</math> ergibt. Nehmen wir an, dass <math>r\not=0</math> erhalten wir die Gleichung <math>\ r\,e^{3i\alpha} = 1\,</math>. Vergleichen wir hier Betrag und Argument, erhalten wir
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}</math>}}
Zeile 255: Zeile 259:
-
== Quadratische Ergänzung ==
+
== D - Quadratische Ergänzung ==
Die wohlbekannten Regeln
Die wohlbekannten Regeln
Zeile 261: Zeile 265:
{{Abgesetzte Formel||<math>\left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.</math>}}
{{Abgesetzte Formel||<math>\left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.</math>}}
-
die wir verwenden um Quadraten zu erweitern, können auch verwendet werden um quadratische Ausdrücke zu vereinfachen, zum Beispiel,
+
können auch verwendet werden, um quadratische Ausdrücke zu vereinfachen, zum Beispiel
{{Abgesetzte Formel||<math>\begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}</math>}}
-
Dies kann verwendet werden um quadratische Gleichungen zu lösen, zum Beispiel,
+
Dies kann verwendet werden, um quadratische Gleichungen zu lösen, zum Beispiel
{{Abgesetzte Formel||<math>\begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}</math>}}
-
Indem wir die Wurzeln berechnen erhalten wir dass <math>x+2=\pm\sqrt{9}</math> und dass <math>x=-2\pm 3</math>, und also <math>x=1</math> oder <math>x=-5</math>.
+
Indem wir die Wurzeln berechnen, erhalten wir, dass <math>x+2=\pm\sqrt{9}</math> und, dass <math>x=-2\pm 3</math> und daher <math>x=1</math> oder <math>x=-5</math>.
-
Manchmal muss man eine Konstante addieren oder subtrahieren, um einer der binomischen Formeln rückwärts verwenden zu können. Zum Beispiel betrachten wir die Gleichung
+
Manchmal muss man eine Konstante addieren oder subtrahieren, um eine der binomischen Formeln umgekehrt verwenden zu können. Zum Beispiel betrachten wir die Gleichung
{{Abgesetzte Formel||<math>x^2+4x-5=0\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>x^2+4x-5=0\,\mbox{.}</math>}}
-
Addiere wir 9 zu beiden Seiten, erhalten wir eine passende quadratische Form:
+
Addieren wir 9 zu beiden Seiten, erhalten wir eine passende quadratische Form
-
{{Abgesetzte Formel||<math>\begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{,}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}</math>}}
-
Diese Methode um quadratische Gleichungen zu lösen nennt man ''quadratische Ergänzung''.
+
Diese Methode, quadratische Gleichungen zu lösen, nennt man ''quadratische Ergänzung''.
Zeile 287: Zeile 291:
<ol type="a">
<ol type="a">
-
<li> Lösen Sie die Gleichung <math>\ x^2-6x+7=2\,</math>.
+
<li> Löse die Gleichung <math>\ x^2-6x+7=2\,</math>.
<br>
<br>
<br>
<br>
-
Der Koeffizient von <math>x</math> ist <math>-6</math> und daher müssen wir die Zahl <math>(-3)^2=9</math> als Konstante haben un quadratische Ergänzung verwenden zu können. Indem wir 2 zu beiden Seiten addieren, erhalten wir:
+
Der Koeffizient von <math>x</math> ist <math>-6</math> und daher müssen wir die Zahl <math>(-3)^2=9</math> als Konstante haben, um die quadratische Ergänzung verwenden zu können. Indem wir 2 auf beiden Seiten addieren, erhalten wir
-
{{Abgesetzte Formel||<math>\begin{align*} x^2-6x+7+2 &= 2+2\,\mbox{,}\\ x^2-6x+9\phantom{{}+2} &= 4\,\mbox{,}\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} x^2-6x+7+2 &= 2+2\\ x^2-6x+9\phantom{{}+2} &= 4\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}</math>}}
-
Wir erhalten also <math>x-3=\pm 2</math>, und also ist <math>x=1</math> oder <math>x=5</math>.
+
Wir erhalten also <math>x-3=\pm 2</math>. Daher ist <math>x=1</math> oder <math>x=5</math>.
</li>
</li>
-
<li> Lösen Sie die Gleichung <math>\ z^2+21=4-8z\,</math>.
+
<li> Löse die Gleichung <math>\ z^2+21=4-8z\,</math>.
<br>
<br>
<br>
<br>
-
Die Gleichung kann wie <math>z^2+8z+17=0</math> geschrieben werden. Indemwir 1 von beiden Seiten subtrahieren, erhalten wir
+
Die Gleichung kann wie <math>z^2+8z+17=0</math> geschrieben werden. Indem wir 1 von beiden Seiten subtrahieren, erhalten wir
-
{{Abgesetzte Formel||<math>\begin{align*} z^2+8z+17-1 &= 0-1\,\mbox{,}\\ z^2+8z+16\phantom{{}-1} &= -1\,\mbox{,}\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\,\mbox{,}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} z^2+8z+17-1 &= 0-1\\ z^2+8z+16\phantom{{}-1} &= -1\\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\end{align*}</math>}}
und daher ist <math>z+4=\pm\sqrt{-1}</math>. Also sind die Wurzeln <math>z=-4-i</math> und <math>z=-4+i</math>.
und daher ist <math>z+4=\pm\sqrt{-1}</math>. Also sind die Wurzeln <math>z=-4-i</math> und <math>z=-4+i</math>.
</li>
</li>
Zeile 309: Zeile 313:
</div>
</div>
-
Allgemein addiert oder subtrahiert man eine Konstante sodass die Konstante in der linken Seite der Gleichung die Quadrate von den halben Koeffizienten vom ''x''-Term ist. Diese Methode ist ganz allgemein, und funktioniert auch für komplexe Gleichungen.
+
Im Allgemeinen addiert oder subtrahiert man eine Konstante, sodass die Konstante auf der linken Seite der Gleichung das Quadrat des halben Koeffizienten des ''x''-Terms ist. Diese Methode funktioniert auch für komplexe Gleichungen.
Zeile 316: Zeile 320:
-
Lösen Sie die Gleichung <math>\ x^2-\frac{8}{3}x+1=2\,</math>.
+
Löse die Gleichung <math>\ x^2-\frac{8}{3}x+1=2\,</math>.
-
Der halbe Koeffizient von <math>x</math> ist <math>-\tfrac{4}{3}</math>. Also müssen wir <math>\bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9}</math> zu beiden Seiten addieren
+
Der halbe Koeffizient von <math>x</math> ist <math>-\tfrac{4}{3}</math>. Also müssen wir <math>\bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9}</math> auf beiden Seiten addieren
-
{{Abgesetzte Formel||<math>\begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\,\mbox{,}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}</math>}}
-
Wir sehen dass <math>x-\tfrac{4}{3}=\pm\tfrac{5}{3}</math> und erhalten dadurch dass <math>x=\tfrac{4}{3}\pm\tfrac{5}{3}</math>, also <math>x=-\tfrac{1}{3}</math> oder <math>x=3</math>.
+
Wir sehen, dass <math>x-\tfrac{4}{3}=\pm\tfrac{5}{3}</math> und erhalten dadurch, dass <math>x=\tfrac{4}{3}\pm\tfrac{5}{3}</math>, also <math>x=-\tfrac{1}{3}</math> oder <math>x=3</math>.
</div>
</div>
Zeile 331: Zeile 335:
-
Lösen Sie die Gleichung <math>\ x^2+px+q=0\,</math>.
+
Löse die Gleichung <math>\ x^2+px+q=0\,</math>.
Durch quadratische Ergänzung erhalten wir
Durch quadratische Ergänzung erhalten wir
-
{{Abgesetzte Formel||<math>\begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\,\mbox{,}\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\,\mbox{,}\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}</math>}}
-
Dadurch erhalten wir eine Allgemeine Lösungsformel für quadratische Gleichungen
+
Dadurch erhalten wir eine allgemeine Lösungsformel für quadratische Gleichungen
{{Abgesetzte Formel||<math>x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}</math>}}
Zeile 348: Zeile 352:
-
Lösen Sie die Gleichung <math>\ z^2-(12+4i)z-4+24i=0\,</math>.
+
Löse die Gleichung <math>\ z^2-(12+4i)z-4+24i=0\,</math>.
-
Der halbe Koeffizient von <math>z</math> ist <math>-(6+2i)</math>, und also addieren wir die Quadrate von den Koeffizienten zu beiden Seiten der Gleichung,
+
Der halbe Koeffizient von <math>z</math> ist <math>-(6+2i)</math>. Daher addieren wir das Quadrat des Koeffizienten auf beiden Seiten der Gleichung
{{Abgesetzte Formel||<math>z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}</math>}}
-
Erweitern Wir die rechte Seite <math>\ (-(6+2i))^2=36+24i+4i^2=32+24i\ </math> und ergänzen die linke Seite Quadratisch, erhalten wir
+
Erweitern wir die rechte Seite <math>\ (-(6+2i))^2=36+24i+4i^2=32+24i\ </math> und ergänzen die linke Seite quadratisch, erhalten wir
-
{{Abgesetzte Formel||<math>\begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\,\mbox{,}\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}</math>}}
Wir erhalten <math>\ z-(6+2i)=\pm 6\ </math> und daher die Wurzeln <math>z=12+2i</math> und <math>z=2i</math>.
Wir erhalten <math>\ z-(6+2i)=\pm 6\ </math> und daher die Wurzeln <math>z=12+2i</math> und <math>z=2i</math>.
Zeile 365: Zeile 369:
</div>
</div>
-
Man kann auch einen Ausdruck quadratisch ergänzen, indem man dieselbe Konstante vom Ausdruck subtrahiert und addiert. Zum Beispiel,
+
Man kann auch einen Ausdruck quadratisch ergänzen, indem man dieselbe Konstante vom Ausdruck subtrahiert und addiert. Das Ziel dabei ist, dass die Variable nur noch in der quadrierten Klammer steht, und nicht mehr außerhalb. Zum Beispiel
{{Abgesetzte Formel||<math>\begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}</math>}}
Zeile 374: Zeile 378:
-
Ergänzen Sie <math>\ z^2+(2-4i)z+1-3i\,</math> quadratisch.
+
Ergänze <math>\ z^2+(2-4i)z+1-3i\,</math> quadratisch.
Zeile 384: Zeile 388:
-
==Lösungen mit der allgemeinen Lösungsformel==
+
== E - Lösungen mit der allgemeinen Lösungsformel==
-
Manchmal ist es am einfachsten quadratische Gleichungen mit der allgemeinen Lösungsformel zu lösen. Bei komplexen Gleichungen können dann aber Terme Wie <math>\sqrt{a+ib}</math> entstehen. Man kann dann annehmen dass
+
Manchmal ist es am einfachsten, quadratische Gleichungen mit der allgemeinen Lösungsformel zu lösen. Bei komplexen Gleichungen können dann aber Terme wie <math>\sqrt{a+ib}</math> entstehen. Man kann dann annehmen, dass
{{Abgesetzte Formel||<math>z=x+iy=\sqrt{a+ib}\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>z=x+iy=\sqrt{a+ib}\,\mbox{.}</math>}}
-
Quadrieren wir beide Seiten erhalten wir
+
Quadrieren wir beide Seiten, erhalten wir
-
{{Abgesetzte Formel||<math>\begin{align*} (x+iy)^2 &= a+ib\,\mbox{,}\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} (x+iy)^2 &= a+ib\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}</math>}}
-
Indem wir den Real- und Imaginärteil vergleichen erhalten wir
+
Indem wir den Real- und Imaginärteil vergleichen, erhalten wir
{{Abgesetzte Formel||<math>\left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.</math>}}
{{Abgesetzte Formel||<math>\left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.</math>}}
-
Diese Gleichungen löst man zum Beispiel indem man <math>y= b/(2x)</math> in der ersten Gleichung substituiert.
+
Diese Gleichungen löst man zum Beispiel, indem man <math>y= b/(2x)</math> in der ersten Gleichung ersetzt.
Zeile 405: Zeile 409:
-
Berechnen Sie <math>\ \sqrt{-3-4i}\,</math>.
+
Berechne <math>\ \sqrt{-3-4i}\,</math>.
-
Wir nehmen an dass <math>\ x+iy=\sqrt{-3-4i}\ </math> wo <math>x</math> und <math>y</math> reelle Zahlen sind. Quadrieren wir beide Seiten erhalten wir
+
Wir nehmen an, dass <math>\ x+iy=\sqrt{-3-4i}\ </math>, wobei <math>x</math> und <math>y</math> reelle Zahlen sind. Quadrieren wir beide Seiten, erhalten wir
-
{{Abgesetzte Formel||<math>\begin{align*} (x+iy)^2 &= -3-4i\,\mbox{,}\\ x^2 - y^2 + 2xyi &= -3-4i\,\mbox{,}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} (x+iy)^2 &= -3-4i\\ x^2 - y^2 + 2xyi &= -3-4i\end{align*}</math>}}
und wir erhalten die beiden Gleichungen
und wir erhalten die beiden Gleichungen
Zeile 416: Zeile 420:
{{Abgesetzte Formel||<math>\Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}</math>}}
-
Von der zweiten Gleichung erhalten wir dass <math>\ y=-4/(2x) = -2/x\ </math>, und dies substituiert in der ersten Gleichung ergibt
+
Von der zweiten Gleichung erhalten wir <math>\ y=-4/(2x) = -2/x\ </math>. Das in der ersten Gleichung substituiert, ergibt
{{Abgesetzte Formel||<math>x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}</math>}}
-
Dies ist eine quadratische Gleichung für <math>x^2</math>, die wir am einfachsten Lösen indem wir <math>t=x^2</math> substituieren,
+
Dies ist eine quadratische Gleichung für <math>x^2</math>, die wir am einfachsten lösen, indem wir <math>t=x^2</math> substituieren
{{Abgesetzte Formel||<math>t^2 +3t -4=0\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>t^2 +3t -4=0\,\mbox{.}</math>}}
-
Die Lösungen sind <math>t = 1</math> und <math>t = -4</math>. Die letzte Lösung ist nicht gültig nachdem <math>x</math> und <math>y</math> reell sein müssen (nach unserer Annahme). Wir erhalten also die Lösungen <math>x=\pm\sqrt{1}</math>, und dadurch
+
Die Lösungen sind <math>t = 1</math> und <math>t = -4</math>. Die letzte Lösung ist nicht gültig, da <math>x</math> und <math>y</math> reell sein müssen (nach unserer Annahme). Wir erhalten also die Lösungen <math>x=\pm\sqrt{1}</math> und dadurch
-
* <math>\ x=-1\ </math> gibt dass <math>\ y=-2/(-1)=2\,</math>,
+
* <math>\ x=-1\ </math> ergibt, dass <math>\ y=-2/(-1)=2\,</math>,
-
* <math>\ x=1\ </math> gibt dass <math>\ y=-2/1=-2\,</math>.
+
* <math>\ x=1\ </math> ergibt, dass <math>\ y=-2/1=-2\,</math>.
Also ist
Also ist
Zeile 439: Zeile 443:
<ol type="a">
<ol type="a">
-
<li> Lösen Sie die Gleichung <math>\ z^2-2z+10=0\,</math>.
+
<li> Löse die Gleichung <math>\ z^2-2z+10=0\,</math>.
<br>
<br>
<br>
<br>
-
Wir erhalten durch die Allgemeine Lösungsformel (Siehe Beispiel 12) dass
+
Wir erhalten durch die allgemeine Lösungsformel (siehe Beispiel 12)
{{Abgesetzte Formel||<math>z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}</math>}}
</li>
</li>
-
<li> Lösen Sie die Gleichung <math>\ z^2 + (4-2i)z -4i=0\,\mbox{.}</math>
+
<li> Löse die Gleichung <math>\ z^2 + (4-2i)z -4i=0\,\mbox{.}</math>
<br>
<br>
<br>
<br>
Zeile 454: Zeile 458:
</li>
</li>
-
<li> Lösen Sie die Gleichung <math>\ iz^2+(2+6i)z+2+11i=0\,\mbox{.}</math>
+
<li> Löse die Gleichung <math>\ iz^2+(2+6i)z+2+11i=0\,\mbox{.}</math>
<br>
<br>
<br>
<br>
-
Division of both sides by <math>i</math> gives
+
Division auf beiden Seiten durch <math>i</math> ergibt
-
{{Abgesetzte Formel||<math>\begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\,\mbox{,}\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}</math>}}
Durch die Lösungsformel erhalten wir
Durch die Lösungsformel erhalten wir
-
{{Abgesetzte Formel||<math>\begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\end{align*}</math>}}
+
{{Abgesetzte Formel||<math>\begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\,\mbox{.}\end{align*}</math>}}
-
Wo wir und vom Beispiel 15 verwendet haben um <math>\ \sqrt{-3-4i}\ </math> zu erhalten. Die Lösungen sind daher
+
indem wir das Beispiel 15 verwenden, um <math>\ \sqrt{-3-4i}\ </math> zu erhalten. Die Lösungen sind daher
{{Abgesetzte Formel||<math>z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}</math>}}
Zeile 472: Zeile 476:
</div>
</div>
 +
<br><br>
 +
 +
Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor <skype style="call" action="call">ombTutor</skype> <skype style="chat" action="chat">ombTutor</skype>
 +
 +
Keine Fragen mehr? Dann mache weiter mit den '''[[3.3 Übungen|Übungen]]''' .

Aktuelle Version

       Theorie          Übungen      

Inhalt:

  • Der Moivresche Satz
  • Quadratische Gleichungen
  • Exponentialfunktionen
  • Quadratische Ergänzung

Lernziele:

Nach diesem Abschnitt solltest Du folgendes wissen:

  • Wie man Potenzen von komplexen Zahlen mit dem Moivreschen Satz löst.
  • Wie man Wurzeln von komplexen Zahlen berechnet, indem man die Zahl in Polarform bringt.
  • Wie man komplexe quadratische Ausdrücke quadratisch ergänzt.
  • Wie man komplexe quadratische Gleichungen löst.

Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weißt ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den Prüfungen beginnen (Du findest den Link in der Student Lounge).

A - Moivrescher Satz

Die Rechenregeln \displaystyle \ \arg (zw) = \arg z + \arg w\ und \displaystyle \ |\,zw\,| = |\,z\,|\,|\,w\,|\ bedeuten, dass

\displaystyle \biggl\{\begin{align*}&\arg (z\cdot z) = \arg z + \arg z \\ &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|\end{align*}\qquad\biggl\{\begin{align*}&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3\end{align*}\qquad\text{etc.}


Für eine beliebige komplexe Zahl \displaystyle z=r\,(\cos \alpha +i\,\sin \alpha) gilt daher, dass

\displaystyle z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}

Falls \displaystyle |\,z\,|=1 (also, dass \displaystyle z am Einheitskreis liegt), erhalten wir den Sonderfall

\displaystyle (\cos \alpha +i\,\sin \alpha)^n = \cos n\alpha +i\,\sin n\alpha\,\mbox{.}

Diese Regel nennt man den Moivreschen Satz. Wie wir sehen werden, ist diese Regel sehr wichtig, wenn man Potenzen und Wurzeln von komplexen Zahlen berechnet.


Beispiel 1


Bestimme \displaystyle z^3 und \displaystyle z^{100} für \displaystyle z = \frac{1+i}{\sqrt2} .


Wir schreiben \displaystyle z in Polarform \displaystyle \ \ z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ und verwenden den Moivreschen Satz

\displaystyle \begin{align*}z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{}\\[6pt] z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\\[4pt] &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}\end{align*}

Beispiel 2

Mit der binomischen Formel können wir den Ausdruck wie folgt erläutern:

\displaystyle \begin{align*} (\cos v + i\,\sin v)^2 &= \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v\\ &= \cos^2\!v - \sin^2\!v + 2i \sin v \cos v\,\mbox{,}\end{align*}

aber wir können auch den Moivreschen Satz benutzen. Dann erhalten wir:

\displaystyle (\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}

Da die beiden Ausdrücke gleich sind, erhalten wir, indem wir die Real- und Imaginärteile gleichsetzen, die bekannten trigonometrischen Identitäten


\displaystyle \biggl\{\begin{align*}\cos 2v &= \cos^2\!v - \sin^2\!v\,\mbox{,}\\[2pt] \sin 2v&= 2 \sin v \cos v\,\mbox{.}\end{align*}

Beispiel 3


Vereinfache \displaystyle \ \ \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,.

Wir schreiben die Zahlen \displaystyle \sqrt{3}+i, \displaystyle 1+i\sqrt{3} und \displaystyle 1+i in Polarform

  • \displaystyle \quad\sqrt{3} + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(},
  • \displaystyle \quad 1+i\sqrt{3} = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(},
  • \displaystyle \quad 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}.

Nach dem Moivreschen Satz erhalten wir

\displaystyle \frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \, (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}\:.

Diesen Ausdruck können wir weiter vereinfachen, indem wir die Multiplikations- und Divisionsregeln für komplexe Zahlen in Polarform verwenden

\displaystyle \begin{align*}\frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin\frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}} {\displaystyle 2^{12}\Bigl(\cos\frac{29\pi}{6} + i\,\sin\frac{29\pi}{6}\,\Bigr)\vphantom{\biggl(}} &= 2^2 \Bigl(\cos\Bigl( -\frac{15\pi}{6}\,\Bigr) + i\,\sin\Bigl( -\frac{15\pi}{6}\,\Bigr)\,\Bigr)\\[8pt] &= 4\Bigl(\cos \Bigl( -\frac{\pi}{2}\,\Bigr) + i\,\sin\Bigl( -\frac{\pi}{2}\,\Bigr)\,\Bigr) = -4i\,\mbox{.}\end{align*}


B - nte Wurzeln von komplexen Zahlen

Eine komplexe Zahl \displaystyle z wird nte Wurzel von \displaystyle w genannt, falls

\displaystyle z^n= w \mbox{.}

Lösungen dieser Wurzelgleichung erhält man, indem man beide Zahlen in Polarform bringt und deren Betrag und Argument vergleicht.

Ist eine Zahl \displaystyle w=|\,w\,|\,(\cos \theta + i\,\sin \theta) gegeben, nimmt man an, dass \displaystyle z=r\,(\cos \alpha + i\, \sin \alpha) und erhält so die Gleichung

\displaystyle r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}

wo wir den Moivreschen Satz auf der linken Seite angewendet haben. Vergleichen wir das Argument und den Betrag der beiden Seiten, erhalten wir

\displaystyle \biggl\{\begin{align*} r^{\,n} &= |w|\,\mbox{,}\\ n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}\end{align*}

Beachte hier, dass wir ein Vielfaches von \displaystyle 2\pi zum Argument addiert haben, um alle Lösungen zu erhalten.

\displaystyle \biggl\{\begin{align*} r &={\textstyle\sqrt[\scriptstyle n]{|w|}},\\ \alpha &= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots\end{align*}

Wir erhalten also einen Wert für \displaystyle r, aber unendlich viele Werte für \displaystyle \alpha. Trotzdem gibt es nicht unendlich viele Lösungen dieser Gleichung. Für Werte von \displaystyle k zwischen \displaystyle k = 0 und \displaystyle k = n - 1 erhalten wir verschiedene Argumente für \displaystyle z und daher verschiedene Zahlen \displaystyle z. Für andere Werte von \displaystyle k wiederholen wir nur die schon bekannten Lösungen, da die Funktionen \displaystyle \cos \theta und \displaystyle \sin \theta periodisch sind und die Periodenlänge \displaystyle 2 \pi haben. Also hat eine Gleichung mit der Form \displaystyle z^n=w genau \displaystyle n Wurzeln.

Hinweis: Beachte, dass die Argumente der Lösungen sich immer um \displaystyle 2\pi/n unterscheiden. Also sind die Lösungen gleichförmig auf dem Kreis mit dem Radius \displaystyle \sqrt[\scriptstyle n]{|w|} verteilt und bilden ein n-seitiges Polygon.


Beispiel 4


Löse die Gleichung \displaystyle \ z^4= 16\,i\,.


Wir schreiben \displaystyle z und \displaystyle 16\,i in Polarform

  • \displaystyle \quad z=r\,(\cos \alpha + i\,\sin \alpha)\,,
  • \displaystyle \quad 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}.

Die Gleichung \displaystyle \ z^4=16\,i\ wird also

\displaystyle r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}

Vergleichen wir das Argument und den Betrag der beiden Seiten, erhalten wir

\displaystyle \biggl\{\begin{align*} r^4 &= 16,\\ 4\alpha &= \pi/2 + k\cdot 2\pi,\end{align*}\qquad\text{d.h.}\qquad\biggl\{\begin{align*} r &= \sqrt[\scriptstyle 4]{16}= 2, \\ \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3.\end{align*}

Die Wurzeln der Gleichung sind daher

\displaystyle \left\{\begin{align*}\displaystyle z_1&= 2\Bigl(\cos \frac{\pi}{8} + i\,\sin\frac{\pi}{8}\,\Bigr),\\[4pt]

\displaystyle z_2 &= 2\Bigl(\cos\frac{5\pi}{8} + i\,\sin\frac{5\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt] \displaystyle z_3 &= 2\Bigl(\cos\frac{9\pi}{8} + i\,\sin\frac{9\pi}{8}\,\Bigr),\vphantom{\biggl(}\\[4pt] \displaystyle z_4 &= 2\Bigl(\cos\frac{13\pi}{8} + i\,\sin\frac{13\pi}{8}\,\Bigr).\end{align*}\right.

[Image]


C - Exponentialform der komplexen Zahlen

Wenn wir \displaystyle i als eine normale Zahl betrachten und die komplexe Zahl \displaystyle z wie eine Funktion von nur \displaystyle \alpha betrachten (in der \displaystyle r also konstant ist), ergibt sich

\displaystyle f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)

und wir erhalten durch wiederholte Ableitung

\displaystyle \begin{align*} f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha = r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\\ f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{etc.}\end{align*}

Die einzigen reellen Funktionen, die dies erfüllen, sind Funktionen in der Form \displaystyle f(x)= e^{\,kx}. Daher stammt folgende Definition:

\displaystyle e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}

Dies ist auch eine Verallgemeinerung der reellen Exponentialfunktion für komplexe Zahlen. Ersetzen wir \displaystyle z=a+ib erhalten wir

\displaystyle e^{\,z} = e^{\,a+ib} = e^{\,a} \, e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}

Die Definition von \displaystyle e^{\,z} kann wie eine Kurzform der Polarform verwendet werden, da \displaystyle z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,.


Beispiel 5

Für eine reelle Zahl \displaystyle z ist die Definition dieselbe wie für die reelle Exponentialfunktion. Da \displaystyle z=a+0\cdot i erhalten wir

\displaystyle e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}

Beispiel 6

Eine weitere Folgerung aus dieser Definition erhalten wir durch den Moivreschen Satz.

\displaystyle \bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}

Das erinnert uns an die wohlbekannte Rechenregel für Potenzen.

\displaystyle \left(a^x\right)^y = a^{x\,y}

Beispiel 7


Mit den Definitionen oben erhalten wir die Formel

\displaystyle e^{\pi\,i} = \cos \pi + i \sin \pi = -1

Diese berühmte Formel wurde von Euler zu Beginn des 18. Jahrhunderts entdeckt.

Beispiel 8

Löse die Gleichung \displaystyle \ (z+i)^3 = -8i.


Wir lassen \displaystyle w = z + i sein. Wir erhalten so die Gleichung \displaystyle \ w^3=-8i\,. Wir bringen als ersten Schritt \displaystyle w und \displaystyle -8i in Polarform

  • \displaystyle \quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}\,\mbox{,}
  • \displaystyle \quad -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}\,\mbox{.}

In Polarform lautet die Gleichung \displaystyle \ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ . Vergleichen wir das Argument und den Betrag der rechten und linken Seite, erhalten wir

\displaystyle \biggl\{\begin{align*} r^3 &= 8\,\mbox{,}\\ 3\alpha &= 3\pi/2+2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r&=\sqrt[\scriptstyle 3]{8}\,\mbox{,}\\ \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2\,\mbox{.}\end{align*}

Die Wurzeln der Gleichung sind daher

  • \displaystyle \quad w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\,\mbox{,}\quad\vphantom{\biggl(}
  • \displaystyle \quad w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\,\mbox{,}\quad\vphantom{\Biggl(}
  • \displaystyle \quad w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\,\mbox{,}\quad\vphantom{\biggl(}

also sind \displaystyle z_1 = 2i-i=i, \displaystyle z_2 = - \sqrt{3}-2i und \displaystyle z_3 = \sqrt{3}-2i.

Beispiel 9


Löse die Gleichung \displaystyle \ z^2 = \overline{z}\,.


Wenn für \displaystyle z=a+ib, \displaystyle |\,z\,|=r und \displaystyle \arg z = \alpha ist, ist für \displaystyle \overline{z}= a-ib \displaystyle |\,\overline{z}\,|=r und \displaystyle \arg \overline{z} = - \alpha. Also ist \displaystyle z=r\,e^{i\alpha} und \displaystyle \overline{z} = r\,e^{-i\alpha}. Die Gleichung lautet also

\displaystyle (r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\qquad\text{oder}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{.}

Wir sehen direkt, dass \displaystyle r=0 eine der Lösungen ist und daher die Lösung \displaystyle z=0 ergibt. Nehmen wir an, dass \displaystyle r\not=0 erhalten wir die Gleichung \displaystyle \ r\,e^{3i\alpha} = 1\,. Vergleichen wir hier Betrag und Argument, erhalten wir

\displaystyle \biggl\{\begin{align*} r &= 1\,\mbox{,}\\ 3\alpha &= 0 + 2k\pi\,\mbox{,}\end{align*}\qquad\Leftrightarrow\qquad\biggl\{\begin{align*} r &= 1\,\mbox{,}\\ \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2\,\mbox{.}\end{align*}

Die Wurzeln sind also

  • \displaystyle \quad z_1 = e^0 = 1\,\mbox{,}
  • \displaystyle \quad z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\,\mbox{,}\vphantom{\Biggl(}
  • \displaystyle \quad z_3 = e^{4\pi i/ 3} = \cos\frac{4\pi}{3} + i\,\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt3}{2}\,i\,\mbox{,}
  • \displaystyle \quad z_4 = 0\,\mbox{.}


D - Quadratische Ergänzung

Die wohlbekannten Regeln

\displaystyle \left\{\begin{align*} (a+b)^2 &= a^2+2ab+b^2\\ (a-b)^2 &= a^2-2ab+b^2\end{align*}\right.

können auch verwendet werden, um quadratische Ausdrücke zu vereinfachen, zum Beispiel

\displaystyle \begin{align*} x^2+4x+4 &= (x+2)^2\,\mbox{,}\\ x^2-10x+25 &= (x-5)^2\,\mbox{.}\end{align*}

Dies kann verwendet werden, um quadratische Gleichungen zu lösen, zum Beispiel

\displaystyle \begin{align*} x^2+4x+4 &= 9\,\mbox{,}\\ (x+2)^2 &= 9\,\mbox{.}\end{align*}

Indem wir die Wurzeln berechnen, erhalten wir, dass \displaystyle x+2=\pm\sqrt{9} und, dass \displaystyle x=-2\pm 3 und daher \displaystyle x=1 oder \displaystyle x=-5.


Manchmal muss man eine Konstante addieren oder subtrahieren, um eine der binomischen Formeln umgekehrt verwenden zu können. Zum Beispiel betrachten wir die Gleichung

\displaystyle x^2+4x-5=0\,\mbox{.}

Addieren wir 9 zu beiden Seiten, erhalten wir eine passende quadratische Form

\displaystyle \begin{align*} x^2+4x-5+9 &= 0+9\,\mbox{}\\ x^2+4x+4\phantom{{}+9} &= 9\,\mbox{.}\end{align*}

Diese Methode, quadratische Gleichungen zu lösen, nennt man quadratische Ergänzung.


Beispiel 10

  1. Löse die Gleichung \displaystyle \ x^2-6x+7=2\,.

    Der Koeffizient von \displaystyle x ist \displaystyle -6 und daher müssen wir die Zahl \displaystyle (-3)^2=9 als Konstante haben, um die quadratische Ergänzung verwenden zu können. Indem wir 2 auf beiden Seiten addieren, erhalten wir
    \displaystyle \begin{align*} x^2-6x+7+2 &= 2+2\\ x^2-6x+9\phantom{{}+2} &= 4\\ \rlap{(x-3)^2}\phantom{x^2-6x+7+2}{} &= 4\,\mbox{.}\end{align*}

    Wir erhalten also \displaystyle x-3=\pm 2. Daher ist \displaystyle x=1 oder \displaystyle x=5.

  2. Löse die Gleichung \displaystyle \ z^2+21=4-8z\,.

    Die Gleichung kann wie \displaystyle z^2+8z+17=0 geschrieben werden. Indem wir 1 von beiden Seiten subtrahieren, erhalten wir
    \displaystyle \begin{align*} z^2+8z+17-1 &= 0-1\\ z^2+8z+16\phantom{{}-1} &= -1\\\ \rlap{(z+4)^2}\phantom{z^2+8z+17-1}{} &= -1\end{align*}

    und daher ist \displaystyle z+4=\pm\sqrt{-1}. Also sind die Wurzeln \displaystyle z=-4-i und \displaystyle z=-4+i.

Im Allgemeinen addiert oder subtrahiert man eine Konstante, sodass die Konstante auf der linken Seite der Gleichung das Quadrat des halben Koeffizienten des x-Terms ist. Diese Methode funktioniert auch für komplexe Gleichungen.


Beispiel 11


Löse die Gleichung \displaystyle \ x^2-\frac{8}{3}x+1=2\,.


Der halbe Koeffizient von \displaystyle x ist \displaystyle -\tfrac{4}{3}. Also müssen wir \displaystyle \bigl(-\tfrac{4}{3}\bigr)^2=\tfrac{16}{9} auf beiden Seiten addieren

\displaystyle \begin{align*} x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1 &= 2+\tfrac{16}{9}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}}{}+1 &= \tfrac{34}{9}\\ \rlap{\bigl(x-\tfrac{4}{3}\bigr)^2}\phantom{x^2-\tfrac{8}{3}x+\tfrac{16}{9}+1} &= \tfrac{25}{9}\,\mbox{.}\end{align*}

Wir sehen, dass \displaystyle x-\tfrac{4}{3}=\pm\tfrac{5}{3} und erhalten dadurch, dass \displaystyle x=\tfrac{4}{3}\pm\tfrac{5}{3}, also \displaystyle x=-\tfrac{1}{3} oder \displaystyle x=3.

Beispiel 12


Löse die Gleichung \displaystyle \ x^2+px+q=0\,.


Durch quadratische Ergänzung erhalten wir

\displaystyle \begin{align*} x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q &= \Bigl(\frac{p}{2}\Bigr)^2\\ \rlap{\Bigl(x+\frac{p}{2}\Bigr)^2}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \Bigl(\frac{p}{2}\Bigr)^2-q\\ \rlap{x+\frac{p}{2}}\phantom{x^2+px+\Bigl(\frac{p}{2}\Bigr)^2+q}{} &= \pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\ \mbox{.}\end{align*}

Dadurch erhalten wir eine allgemeine Lösungsformel für quadratische Gleichungen

\displaystyle x=-\frac{p}{2}\pm \sqrt{\Bigl(\frac{p}{2}\Bigr)^2-q}\,\mbox{.}

Beispiel 13


Löse die Gleichung \displaystyle \ z^2-(12+4i)z-4+24i=0\,.



Der halbe Koeffizient von \displaystyle z ist \displaystyle -(6+2i). Daher addieren wir das Quadrat des Koeffizienten auf beiden Seiten der Gleichung

\displaystyle z^2-(12+4i)z+(-(6+2i))^2-4+24i=(-(6+2i))^2\,\mbox{.}

Erweitern wir die rechte Seite \displaystyle \ (-(6+2i))^2=36+24i+4i^2=32+24i\ und ergänzen die linke Seite quadratisch, erhalten wir

\displaystyle \begin{align*} (z-(6+2i))^2-4+24i &= 32+24i\\ \rlap{(z-(6+2i))^2}\phantom{(z-(6+2i))^2-4+24i}{} &= 36\,\mbox{.}\end{align*}

Wir erhalten \displaystyle \ z-(6+2i)=\pm 6\ und daher die Wurzeln \displaystyle z=12+2i und \displaystyle z=2i.

Man kann auch einen Ausdruck quadratisch ergänzen, indem man dieselbe Konstante vom Ausdruck subtrahiert und addiert. Das Ziel dabei ist, dass die Variable nur noch in der quadrierten Klammer steht, und nicht mehr außerhalb. Zum Beispiel

\displaystyle \begin{align*} x^2+10x+3 &= x^2+10x+25+3-25\\ &= (x+5)^2-22\,\mbox{.}\end{align*}


Beispiel 14


Ergänze \displaystyle \ z^2+(2-4i)z+1-3i\, quadratisch.


Wir subtrahieren und addieren \displaystyle \bigl(\frac{1}{2}(2-4i)\bigr)^2=(1-2i)^2=-3-4i\, vom Ausdruck,

\displaystyle \begin{align*} z^2+(2-4i)z+1-3i &= z^2+(2-4i)z+(1-2i)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(1-2i)^2+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2-(-3-4i)+1-3i\\ &= \bigl(z+(1-2i)\bigr)^2+4+i\,\mbox{.}\end{align*}


E - Lösungen mit der allgemeinen Lösungsformel

Manchmal ist es am einfachsten, quadratische Gleichungen mit der allgemeinen Lösungsformel zu lösen. Bei komplexen Gleichungen können dann aber Terme wie \displaystyle \sqrt{a+ib} entstehen. Man kann dann annehmen, dass

\displaystyle z=x+iy=\sqrt{a+ib}\,\mbox{.}

Quadrieren wir beide Seiten, erhalten wir

\displaystyle \begin{align*} (x+iy)^2 &= a+ib\\ x^2 - y^2 + 2xy\,i &= a+ib\,\mbox{.}\end{align*}

Indem wir den Real- und Imaginärteil vergleichen, erhalten wir

\displaystyle \left\{\begin{align*} &x^2 - y^2 = a\,\mbox{,}\\ &2xy=b\,\mbox{.}\end{align*}\right.

Diese Gleichungen löst man zum Beispiel, indem man \displaystyle y= b/(2x) in der ersten Gleichung ersetzt.


Beispiel 15


Berechne \displaystyle \ \sqrt{-3-4i}\,.


Wir nehmen an, dass \displaystyle \ x+iy=\sqrt{-3-4i}\ , wobei \displaystyle x und \displaystyle y reelle Zahlen sind. Quadrieren wir beide Seiten, erhalten wir

\displaystyle \begin{align*} (x+iy)^2 &= -3-4i\\ x^2 - y^2 + 2xyi &= -3-4i\end{align*}

und wir erhalten die beiden Gleichungen

\displaystyle \Bigl\{\begin{align*} x^2 - y^2 &= -3\,\mbox{,}\\ 2xy&= -4\,\mbox{.}\end{align*}

Von der zweiten Gleichung erhalten wir \displaystyle \ y=-4/(2x) = -2/x\ . Das in der ersten Gleichung substituiert, ergibt

\displaystyle x^2-\frac{4}{x^2} = -3 \quad \Leftrightarrow \quad x^4 +3x^2 - 4=0\,\mbox{.}

Dies ist eine quadratische Gleichung für \displaystyle x^2, die wir am einfachsten lösen, indem wir \displaystyle t=x^2 substituieren

\displaystyle t^2 +3t -4=0\,\mbox{.}

Die Lösungen sind \displaystyle t = 1 und \displaystyle t = -4. Die letzte Lösung ist nicht gültig, da \displaystyle x und \displaystyle y reell sein müssen (nach unserer Annahme). Wir erhalten also die Lösungen \displaystyle x=\pm\sqrt{1} und dadurch

  • \displaystyle \ x=-1\ ergibt, dass \displaystyle \ y=-2/(-1)=2\,,
  • \displaystyle \ x=1\ ergibt, dass \displaystyle \ y=-2/1=-2\,.

Also ist

\displaystyle \sqrt{-3-4i} = \biggl\{\begin{align*} &\phantom{-}1-2i\,\mbox{,}\\ &-1+2i\,\mbox{.}\end{align*}

Beispiel 16


  1. Löse die Gleichung \displaystyle \ z^2-2z+10=0\,.

    Wir erhalten durch die allgemeine Lösungsformel (siehe Beispiel 12)
    \displaystyle z= 1\pm \sqrt{1-10} = 1\pm \sqrt{-9}= 1\pm 3i\,\mbox{.}
  2. Löse die Gleichung \displaystyle \ z^2 + (4-2i)z -4i=0\,\mbox{.}

    Wir verwenden wieder die Lösungsformel und erhalten
    \displaystyle \begin{align*} z &= -2+i\pm\sqrt{\smash{(-2+i)^2+4i}\vphantom{i^2}} = -2+i\pm\sqrt{4-4i+i^{\,2}+4i}\\ &=-2+i\pm\sqrt{3} = -2\pm\sqrt{3}+i\,\mbox{.}\end{align*}
  3. Löse die Gleichung \displaystyle \ iz^2+(2+6i)z+2+11i=0\,\mbox{.}

    Division auf beiden Seiten durch \displaystyle i ergibt
    \displaystyle \begin{align*} z^2 + \frac{2+6i}{i}z +\frac{2+11i}{i} &= 0\\ z^2+ (6-2i)z + 11-2i &= 0\,\mbox{.}\end{align*}

    Durch die Lösungsformel erhalten wir

    \displaystyle \begin{align*} z &= -3+i \pm \sqrt{\smash{(-3+i)^2 -(11-2i)}\vphantom{i^2}}\\ &= -3+i \pm \sqrt{-3-4i}\\ &= -3+i\pm(1-2i)\,\mbox{.}\end{align*}

    indem wir das Beispiel 15 verwenden, um \displaystyle \ \sqrt{-3-4i}\ zu erhalten. Die Lösungen sind daher

    \displaystyle z=\biggl\{\begin{align*} &-2-i\,\mbox{,}\\ &-4+3i\,\mbox{.}\end{align*}



Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor My status My status

Keine Fragen mehr? Dann mache weiter mit den Übungen .