Lösung 3.3:4d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Aktuelle Version (13:14, 3. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
To avoid having <math>z</math> in the denominator, we multiply both sides of the equation by <math>z</math>,
+
Um <math>z</math> im Nenner zu meiden, multiplizieren wir beide Seiten mit <math>z</math>
-
{{Displayed math||<math>1+z^2=\frac{1}{2}\,z\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>1+z^2=\frac{1}{2}\,z\,\textrm{.}</math>}}
-
This multiplication could possibly introduce a spurious root if it turns out that the new equation has <math>z=0</math> as a root. The old equation, for understandable reasons, doesn't have <math>z=0</math> as a solution.
+
In dieser Gleichung können aber Scheinlösungen entstanden sein. Wenn <math>z=0</math> eine Wurzel ist, kann sie unmöglich eine Wurzel der ursprünglichen Gleichung sein.
-
If we move the terms over to the left-hand side and complete the square, we get
+
Ziehen wir alle Terme zur linken Seite erhalten wir durch quadratische Ergänzung
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
-
z^2 - \frac{1}{2}\,z + 1 &= 0\,,\\[5pt]
+
z^2 - \frac{1}{2}\,z + 1 &= 0\\[5pt]
-
\Bigl(z-\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 + 1 &= 0\,,\\[5pt]
+
\Bigl(z-\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 + 1 &= 0\\[5pt]
\Bigl(z-\frac{1}{4}\Bigr)^2 + \frac{15}{16} &= 0\,\textrm{.}
\Bigl(z-\frac{1}{4}\Bigr)^2 + \frac{15}{16} &= 0\,\textrm{.}
\end{align}</math>}}
\end{align}</math>}}
-
This gives that the equation has solutions
+
Wir erhalten die Wurzeln
-
{{Displayed math||<math>z=\frac{1}{4}+i\,\frac{\sqrt{15}}{4}\quad</math> and <math>\quad z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z=\frac{1}{4}+i\,\frac{\sqrt{15}}{4}\quad</math> und <math>\quad z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}\,\textrm{.}</math>}}
-
None of these solutions are equal to zero, so these are also solutions to the original equation.
+
Da keine dieser Lösungen null ist, sind das auch Lösungen der ursprünglichen Gleichung.
-
We substitute the solutions into the original equations to assure ourselves that we have calculated correctly.
+
Wir substituieren aber trotzdem die Wurzeln in der ursprünglichen Gleichung, um zu kontrollieren, dass wir richtig gerechnet haben.
<math>\begin{align}
<math>\begin{align}
-
z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:\quad \text{LHS}
+
z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:\quad \text{Linke Seite}
&= \frac{1}{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{1}{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4} - i\dfrac{\sqrt{15}}{4}\,\Bigr)\Bigl(\dfrac{1}{4} + i\,\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4} - i\dfrac{\sqrt{15}}{4}\,\Bigr)\Bigl(\dfrac{1}{4} + i\,\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt]
Zeile 28: Zeile 28:
&= \frac{1}{4} + i\frac{\sqrt{15}}{4} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{1}{4} + i\frac{\sqrt{15}}{4} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{1}{2}\\[5pt]
&= \frac{1}{2}\\[5pt]
-
&= \text{RHS,}\\[10pt]
+
&= \text{Rechte Seite,}\\[10pt]
-
z={}\rlap{\frac{1}{4}+i\frac{\sqrt{15}}{4}:}\phantom{\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:}{}\quad \text{LHS}
+
z={}\rlap{\frac{1}{4}+i\frac{\sqrt{15}}{4}:}\phantom{\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:}{}\quad \text{Linke Seite}
&= \frac{1}{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{1}{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}\Bigr)\Bigl(\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}\Bigr)\Bigl(\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt]
Zeile 35: Zeile 35:
&= \frac{1}{4} - i\frac{\sqrt{15}}{4} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{1}{4} - i\frac{\sqrt{15}}{4} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt]
&= \frac{1}{2}\\[5pt]
&= \frac{1}{2}\\[5pt]
-
&= \text{RHS.}
+
&= \text{Rechte Seite.}
\end{align}</math>
\end{align}</math>

Aktuelle Version

Um \displaystyle z im Nenner zu meiden, multiplizieren wir beide Seiten mit \displaystyle z

\displaystyle 1+z^2=\frac{1}{2}\,z\,\textrm{.}

In dieser Gleichung können aber Scheinlösungen entstanden sein. Wenn \displaystyle z=0 eine Wurzel ist, kann sie unmöglich eine Wurzel der ursprünglichen Gleichung sein.

Ziehen wir alle Terme zur linken Seite erhalten wir durch quadratische Ergänzung

\displaystyle \begin{align}

z^2 - \frac{1}{2}\,z + 1 &= 0\\[5pt] \Bigl(z-\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 + 1 &= 0\\[5pt] \Bigl(z-\frac{1}{4}\Bigr)^2 + \frac{15}{16} &= 0\,\textrm{.} \end{align}

Wir erhalten die Wurzeln

\displaystyle z=\frac{1}{4}+i\,\frac{\sqrt{15}}{4}\quad und \displaystyle \quad z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}\,\textrm{.}

Da keine dieser Lösungen null ist, sind das auch Lösungen der ursprünglichen Gleichung.

Wir substituieren aber trotzdem die Wurzeln in der ursprünglichen Gleichung, um zu kontrollieren, dass wir richtig gerechnet haben.

\displaystyle \begin{align} z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:\quad \text{Linke Seite} &= \frac{1}{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4} - i\dfrac{\sqrt{15}}{4}\,\Bigr)\Bigl(\dfrac{1}{4} + i\,\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}}{\dfrac{1}{16}+\dfrac{15}{16}}+\frac{1}{4}-i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{4} + i\frac{\sqrt{15}}{4} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{2}\\[5pt] &= \text{Rechte Seite,}\\[10pt] z={}\rlap{\frac{1}{4}+i\frac{\sqrt{15}}{4}:}\phantom{\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:}{}\quad \text{Linke Seite} &= \frac{1}{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}\Bigr)\Bigl(\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}}{\dfrac{1}{16}+\dfrac{15}{16}} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{4} - i\frac{\sqrt{15}}{4} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{2}\\[5pt] &= \text{Rechte Seite.} \end{align}