Lösung 3.3:4c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:07, 3. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We complete the square on the left-hand side:
+
Durch quadratische Ergänzung der linken Seite erhalten wir
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
(z+1)^2-1^2+3 &= 0\,,\\[5pt]
 +
(z+1)^2+2 &= 0\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Und die Wurzeln sind <math>z+1=\pm i\sqrt{2}</math>, also <math>z=-1+i\sqrt{2}</math> und <math>z=-1-i\sqrt{2}</math>.
-
& \left( z+1 \right)^{\text{2}}-1^{2}+3=0 \\
+
-
& \left( z+1 \right)^{\text{2}}+2=0 \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
Taking the root now gives
+
-
<math>z+1=\pm i\sqrt{2}</math>
+
-
i.e.
+
-
<math>z=-1+i\sqrt{2}</math>
+
-
and
+
-
<math>z=-1-i\sqrt{2}</math>.
+
-
 
+
-
We test the solutions in the equation to ascertain that we have calculated correctly.
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& z=-1+i\sqrt{2}:\quad z^{2}+2z+3=\left( -1+i\sqrt{2} \right)^{2}+2\left( -1+i\sqrt{2} \right)+3 \\
+
-
& =\left( -1 \right)^{2}-2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2+2i\sqrt{2}+3 \\
+
-
& =1-2\centerdot i\sqrt{2}-2-2+2i\sqrt{2}+3=0, \\
+
-
\end{align}</math>
+
-
 
+
 +
Wir substituieren die Wurzeln in der ursprünglichen Gleichung und erhalten
<math>\begin{align}
<math>\begin{align}
-
& z=-1-i\sqrt{2}:\quad z^{2}+2z+3=\left( -1-i\sqrt{2} \right)^{2}+2\left( -1-i\sqrt{2} \right)+3 \\
+
z=-1+i\sqrt{2}:\quad z^2+2z+3
-
& =\left( -1 \right)^{2}+2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2-2i\sqrt{2}+3 \\
+
&= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt]
-
& =1+2\centerdot i\sqrt{2}-2-2-2\sqrt{2}i+3=0, \\
+
&= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt]
 +
&= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt]
 +
&= 0,\\[10pt]
 +
z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3
 +
&= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt]
 +
&= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt]
 +
&= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt]
 +
&= 0\,\textrm{.}
\end{align}</math>
\end{align}</math>

Aktuelle Version

Durch quadratische Ergänzung der linken Seite erhalten wir

\displaystyle \begin{align}

(z+1)^2-1^2+3 &= 0\,,\\[5pt] (z+1)^2+2 &= 0\,\textrm{.} \end{align}

Und die Wurzeln sind \displaystyle z+1=\pm i\sqrt{2}, also \displaystyle z=-1+i\sqrt{2} und \displaystyle z=-1-i\sqrt{2}.

Wir substituieren die Wurzeln in der ursprünglichen Gleichung und erhalten

\displaystyle \begin{align} z=-1+i\sqrt{2}:\quad z^2+2z+3 &= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt] &= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt] &= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt] &= 0,\\[10pt] z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3 &= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt] &= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt] &= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt] &= 0\,\textrm{.} \end{align}