Lösung 3.1:4b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:15, 22. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Wenn wir beide Seiten durch <math>2-i</math> dividieren, erhalten wir <math>z</math> auf der linken Seite,
-
If we divide both sides by 2-i, we obtain z by itself on the left-hand side:
+
 +
{{Abgesetzte Formel||<math>z=\frac{3+2i}{2-i}\,\textrm{.}</math>}}
-
<math>z=\frac{3+2i}{2-i}.</math>
+
Also müssen wir den Bruch auf der linken Seite berechnen. Wir erweitern den Bruch mit dem konjugiert komplexen Nenner,
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
z &= \frac{(3+2i)(2+i)}{(2-i)(2+i)}\\[5pt]
 +
&= \frac{3\cdot 2+3\cdot i +2i\cdot 2+2i\cdot i}{2^2-i^2}\\[5pt]
 +
&= \frac{6+3i+4i-2}{4+1}\\[5pt]
 +
&= \frac{4+7i}{5}\\[5pt]
 +
&= \frac{4}{5}+\frac{7}{5}\,i\,\textrm{.}
 +
\end{align}</math>}}
-
It remains to calculate the quotient on the right-hand side. We multiply top and bottom by the complex conjugate of the numerator:
+
Wir substituieren <math>z=\tfrac{4}{5}+\tfrac{7}{5}i</math> in der Ursprünglichen Gleichung, um zu kontrollieren, ob wir richtig gerechnet haben,
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>\begin{align}z&= \frac{(3+2i)(2+i)}{(2-i)(2+i)}=\frac{3\cdot 2+3\cdot i +2i\cdot 2+2i\cdot i}{2^2-i^2}\\
+
\text{Linke Seite}
-
&=\frac{6+3i+4i-2}{4+1}=\frac{4+7i}{5}=\frac{4}{5}+\frac{7}{5}i\end{align}</math>
+
&= (2-i)z\\[5pt]
-
 
+
&= (2-i)\Bigl(\frac{4}{5}+\frac{7}{5}\,i\bigr)\\[5pt]
-
 
+
&= 2\cdot\frac{4}{5} + 2\cdot\frac{7}{5}\,i - i\cdot\frac{4}{5} - i\cdot\frac{7}{5}\,i\\[5pt]
-
Also, we substitute <math>z=\frac{4}{5}+\frac{7}{5}i</math> into the original equation to assure ourselves that we have calculated correctly:
+
&= \frac{8}{5} + \frac{14}{5}\,i - \frac{4}{5}\,i + \frac{7}{5}\\[5pt]
-
 
+
&= \frac{8+7}{5} + \frac{14-4}{5}\,i\\[5pt]
-
 
+
&= \frac{15}{5} + \frac{10}{5}\,i\\[5pt]
-
<math>\begin{align}LHS &= (2-i)z=(2-i)(\frac{4}{5}+\frac{7}{5}i)\\
+
&= 3+2i\\[5pt]
-
&=2\cdot\frac{4}{5}-i\cdot\frac{4}{5}+2\cdot \frac{7}{5}i -i\cdot \frac{7}{5}i\\
+
&= \text{Rechte Seite.}\end{align}</math>}}
-
&=\frac{8}{5}-\frac{4}{5}i+\frac{14}{5}i+\frac{7}{5} = \frac{8+7}{5}+\frac{14-4}{5}i\\
+
-
&=\frac{15}{5}+\frac{10}{5}i=3+2i=RHS.\end{align}</math>
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Aktuelle Version

Wenn wir beide Seiten durch \displaystyle 2-i dividieren, erhalten wir \displaystyle z auf der linken Seite,

\displaystyle z=\frac{3+2i}{2-i}\,\textrm{.}

Also müssen wir den Bruch auf der linken Seite berechnen. Wir erweitern den Bruch mit dem konjugiert komplexen Nenner,

\displaystyle \begin{align}

z &= \frac{(3+2i)(2+i)}{(2-i)(2+i)}\\[5pt] &= \frac{3\cdot 2+3\cdot i +2i\cdot 2+2i\cdot i}{2^2-i^2}\\[5pt] &= \frac{6+3i+4i-2}{4+1}\\[5pt] &= \frac{4+7i}{5}\\[5pt] &= \frac{4}{5}+\frac{7}{5}\,i\,\textrm{.} \end{align}

Wir substituieren \displaystyle z=\tfrac{4}{5}+\tfrac{7}{5}i in der Ursprünglichen Gleichung, um zu kontrollieren, ob wir richtig gerechnet haben,

\displaystyle \begin{align}

\text{Linke Seite} &= (2-i)z\\[5pt] &= (2-i)\Bigl(\frac{4}{5}+\frac{7}{5}\,i\bigr)\\[5pt] &= 2\cdot\frac{4}{5} + 2\cdot\frac{7}{5}\,i - i\cdot\frac{4}{5} - i\cdot\frac{7}{5}\,i\\[5pt] &= \frac{8}{5} + \frac{14}{5}\,i - \frac{4}{5}\,i + \frac{7}{5}\\[5pt] &= \frac{8+7}{5} + \frac{14-4}{5}\,i\\[5pt] &= \frac{15}{5} + \frac{10}{5}\,i\\[5pt] &= 3+2i\\[5pt] &= \text{Rechte Seite.}\end{align}