Lösung 1.2:3f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (11:00, 20. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We have no differentiation rule for a function raised to another function, but instead we rewrite
+
Es gibt keine Regel, um die Funktion direkt abzuleiten. Stattdessen verwenden wir die Regel
 +
{{Abgesetzte Formel||<math>a^b = e^{\ln a^b} = e^{b\ln a}\,.</math>}}
-
<math>a^{b}=e^{\ln a^{b}}=e^{b\ln a}</math>,
+
Das ergibt
-
which, in our case, gives
+
{{Abgesetzte Formel||<math>x^{\tan x} = e^{\tan x\cdot\ln x}\,\textrm{.}</math>|(*)}}
 +
Jetzt leiten wir die Funktion mit der Kettenregel ab
-
<math>x^{\tan x}=e^{\tan x\centerdot \ln x}</math>
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}} = {}\rlap{e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}\bigr)'}\phantom{e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)}</math>}}
 +
und verwenden die Faktorregel
-
Now, we obtain the derivative by first using the chain rule
+
{{Abgesetzte Formel||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}}{}
 +
&= e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)\\[5pt]
 +
&= e^{\tan x\cdot\ln x}\Bigl(\frac{1}{\cos^2\!x}\cdot\ln x + \tan x\cdot\frac{1}{x} \Bigr)\\[5pt]
 +
&= e^{\tan x\cdot\ln x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\\[5pt]
 +
&= x^{\tan x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\,,
 +
\end{align}</math>}}
-
 
+
wobei wir (*) rückwärts verwendet haben.
-
<math>\frac{d}{dx}e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}=e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}\centerdot \left( \left\{ \left. \tan x\centerdot \ln x \right\} \right. \right)^{\prime }</math>
+
-
 
+
-
 
+
-
and then the product rule:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& =e^{\tan x\centerdot \ln x}\left( \left( \tan x \right)^{\prime }\centerdot \ln x+\tan x\centerdot \left( \ln x \right)^{\prime } \right) \\
+
-
& =e^{\tan x\centerdot \ln x}\left( \frac{1}{\cos ^{2}x}\centerdot \ln x+\tan x\centerdot \frac{1}{x} \right) \\
+
-
& =e^{\tan x\centerdot \ln x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
+
-
& =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
+
-
\end{align}</math>
+

Aktuelle Version

Es gibt keine Regel, um die Funktion direkt abzuleiten. Stattdessen verwenden wir die Regel

\displaystyle a^b = e^{\ln a^b} = e^{b\ln a}\,.

Das ergibt

\displaystyle x^{\tan x} = e^{\tan x\cdot\ln x}\,\textrm{.} (*)

Jetzt leiten wir die Funktion mit der Kettenregel ab

\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}} = {}\rlap{e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}\bigr)'}\phantom{e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)}

und verwenden die Faktorregel

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}}{} &= e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{1}{\cos^2\!x}\cdot\ln x + \tan x\cdot\frac{1}{x} \Bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\\[5pt] &= x^{\tan x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\,, \end{align}

wobei wir (*) rückwärts verwendet haben.