Lösung 1.2:2b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (07:42, 20. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The whole expression consists of two parts: the outer part, "
+
Die Funktion besteht aus der äußeren Exponentialfunktion,
-
<math>e</math>
+
-
raised to something",
+
 +
{{Abgesetzte Formel||<math>e^{\,\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}\,,</math>}}
-
<math>e^{\left\{ \left. {} \right\} \right.}</math>
+
und der inneren Funktion <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} = x^2+x</math>.
 +
Wir erhalten die Ableitung der Funktion mit der Kettenregel, indem wir die Ableitung von <math>e^{\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}</math> in Bezug auf <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}</math> mit der inneren Ableitung <math>\bigl( \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} \bigr)'</math> multiplizieren, also
-
where "something" is the inner part
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}} = e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,x^2+x\,} \bigr)'\,\textrm{.}</math>}}
-
<math>\left\{ \left. {} \right\} \right.=x^{2}+x</math>. The derivative is calculated according to the chain rule by differentiating
+
-
<math>e^{\left\{ \left. {} \right\} \right.}</math>
+
-
with respect to
+
-
<math>\left\{ \left. {} \right\} \right.</math>
+
-
and then multiplying by the inner derivative
+
-
<math>\left( \left\{ \left. {} \right\} \right. \right)^{\prime }</math>, i.e.
+
 +
Die innere Funktion ist ein Polynom und wir erhalten direkt die innere Ableitung
-
<math>\frac{d}{dx}e^{\left\{ \left. x^{2}+x \right\} \right.}=e^{\left\{ \left. x^{2}+x \right\} \right.}\centerdot \left( \left\{ \left. x^{2}+x \right\} \right. \right)^{\prime }</math>
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,e^{x^2+x} = e^{x^2+x}\cdot (2x+1)\,\textrm{.}</math>}}
-
 
+
-
 
+
-
The inner part is an ordinary polynomial which we differentiate directly:
+
-
 
+
-
 
+
-
<math>\frac{d}{dx}e^{\left\{ \left. x^{2}+x \right\} \right.}=e^{\left\{ \left. x^{2}+x \right\} \right.}\centerdot \left( 2x+1 \right)</math>
+

Aktuelle Version

Die Funktion besteht aus der äußeren Exponentialfunktion,

\displaystyle e^{\,\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}\,,

und der inneren Funktion \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} = x^2+x.

Wir erhalten die Ableitung der Funktion mit der Kettenregel, indem wir die Ableitung von \displaystyle e^{\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}} in Bezug auf \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} mit der inneren Ableitung \displaystyle \bigl( \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} \bigr)' multiplizieren, also

\displaystyle \frac{d}{dx}\,e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}} = e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,x^2+x\,} \bigr)'\,\textrm{.}

Die innere Funktion ist ein Polynom und wir erhalten direkt die innere Ableitung

\displaystyle \frac{d}{dx}\,e^{x^2+x} = e^{x^2+x}\cdot (2x+1)\,\textrm{.}