1.2 Ableitungsregeln

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 21: Zeile 21:
}}
}}
-
== Die Faktor- und Quotientenregel ==
+
== A - Die Produkt- und Quotientenregel ==
Mittels der Definition der Ableitung können wir Ableitungsregeln für Produkte und Quotienten von Funktionen herleiten:
Mittels der Definition der Ableitung können wir Ableitungsregeln für Produkte und Quotienten von Funktionen herleiten:
Zeile 66: Zeile 66:
-
== Ableitung von verketteten Funktionen ==
+
== B - Ableitung von verketteten Funktionen ==
Eine Funktion <math>y=f(g)</math>, wo auch die Variable ''g'', selbst eine Funktion von ''x'' ist, nennt man eine verkettete Funktion. Die Funktion ist also <math>y=f \bigl( g(x)\bigr)</math>. Um eine verkettete Funktion abzuleiten, verwendet man die Kettenregel.
Eine Funktion <math>y=f(g)</math>, wo auch die Variable ''g'', selbst eine Funktion von ''x'' ist, nennt man eine verkettete Funktion. Die Funktion ist also <math>y=f \bigl( g(x)\bigr)</math>. Um eine verkettete Funktion abzuleiten, verwendet man die Kettenregel.
Zeile 212: Zeile 212:
-
== Höhere Ableitungen ==
+
== C - Höhere Ableitungen ==
Falls eine Funktion mehrmals differenzierbar ist, kann man auch höhere Ableitungen berechnen, indem man die Funktion mehrmals ableitet.
Falls eine Funktion mehrmals differenzierbar ist, kann man auch höhere Ableitungen berechnen, indem man die Funktion mehrmals ableitet.

Version vom 15:14, 14. Aug. 2009

       Theorie          Übungen      

Inhalt:

  • Die Ableitung eines Produktes und eines Bruches
  • Die Ableitung verketteter Funktionen
  • Höhere Ableitungen

Lernziele:

Nach diesem Abschnitt solltest Du folgendes wissen :

  • Wie man im Prinzip jede Funktion, die aus Elementarfunktionen besteht, ableitet.

A - Die Produkt- und Quotientenregel

Mittels der Definition der Ableitung können wir Ableitungsregeln für Produkte und Quotienten von Funktionen herleiten:

Faktor- und Quotientenregel:

\displaystyle \begin{align*} \frac{d}{dx}\,\bigl(\,f(x) \, g(x) \bigr) &= f^{\,\prime}(x) \, g(x) + f(x) \, g'(x)\\[4pt] \frac{d}{dx}\,\Bigl( \frac{f(x)}{g(x)} \Bigr) &= \frac{f^{\,\prime}(x)\, g(x) - f(x)\, g'(x)}{\bigl(g(x)\bigr)^2} \end{align*}

Beispiel 1

  1. \displaystyle \frac{d}{dx}\,(x^2 e^x) = 2x\, e^x + x^2\, e^x = (2x +x^2)\,e^x\,.
  2. \displaystyle \frac{d}{dx}\,(x \sin x) = 1\times \sin x + x\,\cos x = \sin x + x \cos x\,.
  3. \displaystyle \frac{d}{dx}\,(x \ln x -x) = 1 \times \ln x + x\, \frac{1}{x} - 1 = \ln x + 1 -1 = \ln x\,.
  4. \displaystyle \frac{d}{dx}\,\tan x = \frac{d}{dx}\,\frac{\sin x}{\cos x} = \frac{ \cos x \, \cos x - \sin x \, (-\sin x)}{(\cos x)^2} \vphantom{\biggl(}
    \displaystyle \phantom{\frac{d}{dx}\,\tan x}{} = \frac{\cos^2 x + \sin^2 x }{ \cos^2 x} = \frac{1}{\cos^2 x}\,.
  5. \displaystyle \frac{d}{dx}\,\frac{1+x}{\sqrt{x}} = \frac{\displaystyle 1 \times \sqrt{x} - (1+x) \, \frac{1}{2\sqrt{x}}}{(\sqrt{x}\,)^2} = \frac{\displaystyle\frac{2x}{2\sqrt{x}} - \frac{1}{2\sqrt{x}} - \frac{x}{2\sqrt{x}}}{x} \vphantom{\biggl(}
    \displaystyle \phantom{\frac{d}{dx}\,\frac{1+x}{\sqrt{x}}}{} = \frac {\displaystyle \frac {x-1}{2\sqrt{x}}}{x} = \frac{x-1}{2x\sqrt{x}}\,.
  6. \displaystyle \frac{d}{dx}\,\frac{x\,e^x}{1+x} = \frac{(1\times e^x + x\, e^x)(1+x) - x\,e^x \times 1}{(1+x)^2} \vphantom{\Biggl(}
    \displaystyle \phantom{\frac{d}{dx}\,\frac{x\,e^x}{1+x}}{} = \frac{ e^x + x\,e^x + x\,e^x + x^2\,e^x - x\,e^x}{(1+x)^2} = \frac{(1 + x + x^2)\,e^x} {(1+x)^2}\,.


B - Ableitung von verketteten Funktionen

Eine Funktion \displaystyle y=f(g), wo auch die Variable g, selbst eine Funktion von x ist, nennt man eine verkettete Funktion. Die Funktion ist also \displaystyle y=f \bigl( g(x)\bigr). Um eine verkettete Funktion abzuleiten, verwendet man die Kettenregel.

\displaystyle y'(x) = f^{\,\prime}\bigl( g(x) \bigr)
 \, g'(x)\,\mbox{.}

Nennen wir \displaystyle y=f(u) und \displaystyle u=g(x), wird die Kettenregel

\displaystyle \frac{dy}{dx}
 = \frac{dy}{du} \, \frac{du}{dx}\,\mbox{.}

Man sagt, dass die verkettete Funktion y aus einer äußeren Funktion, f, und einer inneren Funktion g besteht. Analog nennt man \displaystyle f^{\,\prime} die äußere Ableitung, und \displaystyle g' die innere Ableitung.


Beispiel 2

In der Funktion \displaystyle y=(x^2 + 2x)^4 ist

\displaystyle y=u^4 die äußere Funktion und \displaystyle u=x^2+2x die innere Funktion.
\displaystyle \dfrac{dy}{du}=4u^3 die äußere Ableitung und \displaystyle \dfrac{du}{dx}=2x+2 die innere Ableitung.

Die Ableitung der Funktion y in Bezug auf x ist durch die Kettenregel gegeben

\displaystyle \frac{dy}{dx} = \frac{dy}{du} \, \frac{du}{dx}
 = 4 u^3 \, (2x +2) = 4(x^2 + 2x)^3 \, (2x +2)\,\mbox{.}

Wenn man mit verketteten Funktionen rechnet, benennt man die äußere und innere Ableitung meist nicht mit neuen Funktionen, sondern man sagt einfach;

\displaystyle (\text{Äußere Ableitung})
 \, (\text{Innere Ableitung})\,\mbox{.}

Vergessen Sie nicht, die Produkt-und Quotientenregeln falls notwendig anzuwenden.

Beispiel 3

  1. \displaystyle f(x) = \sin (3x^2 + 1)

    \displaystyle \begin{array}{ll} \text{Äußere Ableitung:} & \cos (3x^2 +1)\\ \text{Innere Ableitung:} & 6x \end{array}

    \displaystyle f^{\,\prime}(x) = \cos (3x^2 + 1) \times 6x = 6x \cos (3x^2 +1)
  2. \displaystyle y = 5 \, e^{x^2}

    \displaystyle \begin{array}{ll} \text{Äußere Ableitung:} & 5\,e^{x^2}\\ \text{Innere Ableitung:} & 2x \end{array}

    \displaystyle y' = 5 \, e^{x^2} \times 2x = 10x\, e^{x^2}
  3. \displaystyle f(x) = e^{x\, \sin x}

    \displaystyle \begin{array}{ll} \text{Äußere Ableitung:} & e^{x\, \sin x}\\ \text{Innere Ableitung:} & 1\times \sin x + x \cos x \end{array}

    \displaystyle f^{\,\prime}(x) = e^{x\, \sin x} (\sin x + x \cos x)
  4. \displaystyle s(t) = t^2 \cos (\ln t)

    \displaystyle s'(t) = 2t \, \cos (\ln t) + t^2 \,\Bigl(-\sin (\ln t) \,\frac{1}{t}\Bigr) = 2t \cos (\ln t) - t \sin (\ln t)
  5. \displaystyle \frac{d}{dx}\,a^x = \frac{d}{dx}\,\bigl( e^{\ln a} \bigr)^x = \frac{d}{dx}\,e^{\ln a \times x} = e^{\ln a \times x} \, \ln a = a^x \, \ln a
  6. \displaystyle \frac{d}{dx}\,x^a = \frac{d}{dx}\,\bigl( e^{\ln x} \bigr)^a = \frac{d}{dx}\,e^{ a \, \ln x } = e^{a \, \ln x} \times a \, \frac{1}{x} = x^a \times a \, x^{-1} = ax^{a-1}

Die Kettenregel kann mehrmals angewendet werden, um mehrfach verkettete Funktionen abzuleiten. Zum Beispiel hat die Funktion \displaystyle y= f \bigl( g(h(x))\bigr) die Ableitung


\displaystyle y'= f^{\,\prime} \bigl ( g(h(x))\bigr)
 \, g'(h(x)) \, h'(x)\,\mbox{.}


Beispiel 4

  1. \displaystyle \frac{d}{dx}\,\sin^3 2x = \frac{d}{dx}\,(\sin 2x)^3 = 3(\sin 2x)^2 \, \frac{d}{dx}\,\sin 2x = 3(\sin 2x)^2 \, \cos 2x \, \frac{d}{dx}\,(2x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^3 2x}{}= 3 \sin^2 2x\,\cos 2x\times 2 = 6 \sin^2 2x\,\cos 2x
  2. \displaystyle \frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr) = \cos \bigl((x^2 -3x)^4\bigr) \, \frac{d}{dx}\,(x^2 -3x)^4 \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\times 4 (x^2 -3x)^3 \, \frac{d}{dx}\,(x^2-3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\times 4 (x^2 -3x)^3 \, (2x-3)
  3. \displaystyle \frac{d}{dx}\,\sin^4 (x^2 -3x) = \frac{d}{dx}\,\bigl( \sin (x^2 -3x) \bigr)^4 \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \, \frac{d}{dx}\,\sin(x^2-3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x) \, \frac{d}{dx}(x^2 -3x) \vphantom{\Bigl(}
    \displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x)\, (2x-3)
  4. \displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr) = e^{\sqrt{x^3-1}} \, \frac{d}{dx}\,\sqrt{x^3-1} = e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}} \, \frac{d}{dx}\,(x^3-1) \vphantom{\Biggl(}
    \displaystyle \phantom{\displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr)}{} = e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}} \times 3 x^2 = \frac { 3 x^2 e^{\sqrt{x^3-1}}} {2 \sqrt{x^3-1}} \vphantom{\dfrac{\dfrac{()^2}{()}}{()}}


C - Höhere Ableitungen

Falls eine Funktion mehrmals differenzierbar ist, kann man auch höhere Ableitungen berechnen, indem man die Funktion mehrmals ableitet.

Die zweite Ableitung schreibt man meistens \displaystyle f^{\,\prime\prime}, während man die dritte Ableitung als \displaystyle f^{\,(3)} schreibt, die vierte als \displaystyle f^{\,(4)} etc.

Mann kann auch \displaystyle D^2 f, \displaystyle D^3 f oder \displaystyle \frac{d^2 y}{dx^2}, \displaystyle \frac{d^3 y}{dx^3}, \displaystyle \ldots schreiben.

Beispiel 5

  1. \displaystyle f(x) = 3\,e^{x^2 -1}
    \displaystyle f^{\,\prime}(x) = 3\,e^{x^2 -1} \, \frac{d}{dx}\,(x^2-1) = 3\,e^{x^2 -1} \times 2x = 6x\,e^{x^2 -1}\vphantom{\biggl(}
    \displaystyle f^{\,\prime\prime}(x) = 6\,e^{x^2 -1} + 6x\,e^{x^2 -1} \times 2x = 6\,e^{x^2 -1}\,(1+ 2x^2)
  2. \displaystyle y = \sin x\,\cos x
    \displaystyle \frac{dy}{dx} = \cos x\,\cos x + \sin x\,(- \sin x) = \cos^2 x - \sin^2 x\vphantom{\Biggl(}
    \displaystyle \frac{d^2 y}{dx^2} = 2 \cos x\,(-\sin x) - 2 \sin x \cos x = -4 \sin x \cos x
  3. \displaystyle \frac{d}{dx}\,( e^x \sin x) = e^x \sin x + e^x \cos x = e^x (\sin x + \cos x) \vphantom{\Bigl(}
    \displaystyle \frac{d^2}{dx^2}(e^x\sin x) = \frac{d}{dx}\,\bigl(e^x (\sin x + \cos x)\bigr) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^2}{dx^2}(e^x\sin x)}{} = e^x (\sin x + \cos x) + e^x (\cos x - \sin x) = 2\,e^x \cos x \vphantom{\biggl(}
    \displaystyle \frac{d^3}{dx^3} ( e^x \sin x) = \frac{d}{dx}\,(2\,e^x \cos x) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^3}{dx^3} ( e^x \sin x)}{} = 2\,e^x \cos x + 2\,e^x (-\sin x) = 2\,e^x ( \cos x - \sin x )