Antwort 1.3:3
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="50%"| <math>x=0\,</math> (lokal maximipunkt) |b) |width="50%"| <math>x=-\frac{1}{3}\ln\frac{5}{3}\,</math> (lokal minimipunkt) |- |c) |width="...) |
|||
| (Der Versionsvergleich bezieht 11 dazwischen liegende Versionen mit ein.) | |||
| Zeile 1: | Zeile 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
| - | |width="50%"| <math>x=0\,</math> ( | + | |width="50%"| <math>x=0\,</math> (Lokales Maximum) |
|b) | |b) | ||
| - | |width="50%"| <math>x=-\frac{1}{3}\ln\frac{5}{3}\,</math> ( | + | |width="50%"| <math>x=-\frac{1}{3}\ln\frac{5}{3}\,</math> (Lokales Minimum) |
| + | |- | ||
|- | |- | ||
|c) | |c) | ||
| - | |width="50%"| <math>x=1/e\,</math> ( | + | |width="50%"| <math>x=1/e\,</math> (Lokales Minimum) |
|d) | |d) | ||
| - | |width="50%"| <math>x=-\sqrt{\sqrt{2}-1}\,</math> ( | + | |width="50%"| |
| - | <math>x=0\,</math> ( | + | |
| - | <math>x=\sqrt{\sqrt{2}-1}\,</math> ( | + | <math>x=-\sqrt{\sqrt{2}-1}\,</math> (Lokales Maximum) |
| + | |||
| + | <math>x=0\,</math> (Lokales Minimum) | ||
| + | |||
| + | <math>x=\sqrt{\sqrt{2}-1}\,</math> (Lokales Maximum) | ||
|- | |- | ||
|e) | |e) | ||
| - | |width="50%"| <math>x=-3\,</math> ( | + | |width="50%"| <math>x=-3\,</math> (Lokales Minimum) |
| - | <math>x=-2\,</math> ( | + | <math>x=-2\,</math> (Lokales Maximum) |
| - | <math>x=1\,</math> ( | + | |
| - | <math>x=3\,</math> ( | + | <math>x=1\,</math> (Lokales Minimum) |
| + | |||
| + | <math>x=3\,</math> (Lokales Maximum) | ||
|} | |} | ||
Aktuelle Version
| a) | \displaystyle x=0\, (Lokales Maximum) | b) | \displaystyle x=-\frac{1}{3}\ln\frac{5}{3}\, (Lokales Minimum) |
| c) | \displaystyle x=1/e\, (Lokales Minimum) | d) |
\displaystyle x=-\sqrt{\sqrt{2}-1}\, (Lokales Maximum) \displaystyle x=0\, (Lokales Minimum) \displaystyle x=\sqrt{\sqrt{2}-1}\, (Lokales Maximum) |
| e) | \displaystyle x=-3\, (Lokales Minimum)
\displaystyle x=-2\, (Lokales Maximum) \displaystyle x=1\, (Lokales Minimum) \displaystyle x=3\, (Lokales Maximum) |
