2.3 Partielle Integration

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 23: Zeile 23:
== Partielle Integration ==
== Partielle Integration ==
-
Partielle Integration kann hilfreich sein, um Produkte zu integrieren. Die Methode stammt von der Ableitungsregel für Produkte. Wir lassen <math>u</math> und <math>v</math> zwei ableitbare Funktionen sein, und erhalten durch die Faktorregel die Ableitung
+
Partielle Integration kann hilfreich sein, um Produkte zu integrieren. Die Methode stammt von der Ableitungsregel für Produkte. Wir lassen <math>u</math> und <math>v</math> zwei ableitbare Funktionen sein und erhalten durch die Faktorregel die Ableitung
{{Abgesetzte Formel||<math>D\,(\,u\, v) = u^{\,\prime} \, v + u \, v'\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>D\,(\,u\, v) = u^{\,\prime} \, v + u \, v'\,\mbox{.}</math>}}
Zeile 81: Zeile 81:
{{Abgesetzte Formel||<math> \int x^2 e^x \, dx = x^2 e^x - \int 2x\,e^x \, dx\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math> \int x^2 e^x \, dx = x^2 e^x - \int 2x\,e^x \, dx\,\mbox{.}</math>}}
-
Wir müssen uns hier noch einal von partieller Integration verwenden, um das Intagral <math>\,\int 2x\,e^x \, dx</math> zu berechnen. Hier wählen wir<math>u=2x</math> und <math>v'=e^x</math>,und also ist <math>u'=2</math> und <math>v=e^x</math>:
+
Wir müssen uns hier noch einmal partieller Integration anwenden, um das Integral <math>\,\int 2x\,e^x \, dx</math> zu berechnen. Hier wählen wir <math>u=2x</math> und <math>v'=e^x</math>, und daher ist <math>u'=2</math> und <math>v=e^x</math>:
{{Abgesetzte Formel||<math>\int 2x\,e^x \, dx = 2x\,e^x - \int 2 e^x \, dx = 2x\,e^x - 2 e^x + C\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int 2x\,e^x \, dx = 2x\,e^x - \int 2 e^x \, dx = 2x\,e^x - 2 e^x + C\,\mbox{.}</math>}}
Zeile 101: Zeile 101:
{{Abgesetzte Formel||<math>\begin{align*}\int e^x \cos x \, dx &= e^x \, \cos x - \int e^x \,(-\sin x) \, dx\\[10pt] &= e^x \cos x + \int e^x \sin x \, dx\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\begin{align*}\int e^x \cos x \, dx &= e^x \, \cos x - \int e^x \,(-\sin x) \, dx\\[10pt] &= e^x \cos x + \int e^x \sin x \, dx\,\mbox{.}\end{align*}</math>}}
-
Dieses Integral berechnen wir durch partielle Integration indem wir den Faktor <math>e^x</math> integrieren und den Faktor <math>\sin x</math> ableiten.
+
Dieses Integral berechnen wir durch partielle Integration, indem wir den Faktor <math>e^x</math> integrieren und den Faktor <math>\sin x</math> ableiten.
{{Abgesetzte Formel||<math>\int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx\,\mbox{.}</math>}}
-
Hier erscheine wieder unser ursprüngliches Integral.
+
Hier erscheint wieder unser ursprüngliches Integral.
Wir haben also
Wir haben also
Zeile 115: Zeile 115:
{{Abgesetzte Formel||<math>\int e^x \cos x \, dx = {\textstyle\frac{1}{2}}e^x ( \cos x + \sin x) + C\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int e^x \cos x \, dx = {\textstyle\frac{1}{2}}e^x ( \cos x + \sin x) + C\,\mbox{.}</math>}}
-
Hier erhielten wir kein einfacheres Integral durch die partielle Integration, aber wir erhielten eine Gleichung die wir für unseres Integral lösen konnten. Dies ist oft vorkommend wenn man trigonometrische Funktionen und Exponentialfunktionen integriert.
+
Hier erhielten wir kein einfacheres Integral durch die partielle Integration, aber wir erhielten eine Gleichung, die wir für unser Integral lösen konnten. Dies kommt nicht selten vor, wenn man trigonometrische Funktionen und Exponentialfunktionen integriert.
</div>
</div>
Zeile 124: Zeile 124:
<br>
<br>
<br>
<br>
-
Das Integral kann wie
+
Das Integral kann als
{{Abgesetzte Formel||<math>\int_{0}^{1} \frac{2x}{e^x} \, dx = \int_{0}^{1} 2x \, e^{-x} \, dx\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int_{0}^{1} \frac{2x}{e^x} \, dx = \int_{0}^{1} 2x \, e^{-x} \, dx\,\mbox{.}</math>}}
Zeile 144: Zeile 144:
{{Abgesetzte Formel||<math>\int \ln \sqrt{x} \, dx = \int \ln u \times 2u \, du\,\mbox{.}</math>}}
{{Abgesetzte Formel||<math>\int \ln \sqrt{x} \, dx = \int \ln u \times 2u \, du\,\mbox{.}</math>}}
-
Danach verwenden wir uns von partieller Integration. Wir leiten den Faktor <math>\ln u</math> ab, und integrieren den Faktor <math>2u</math>
+
Danach wenden wir partielle Integration an. Wir leiten den Faktor <math>\ln u</math> ab, und integrieren den Faktor <math>2u</math>
{{Abgesetzte Formel||<math>\begin{align*}\int \ln u \times 2u \, du &= u^2 \ln u - \int u^2 \, \frac{1}{u} \, du = u^2 \ln u - \int u\, du\\[4pt] &= u^2 \ln u - \frac{u^2}{2} + C = x \ln \sqrt{x} - \frac {x}{2} + C\\[4pt] &= x \bigl( \ln \sqrt{x} - \tfrac{1}{2} \bigr) + C\,\mbox{.}\end{align*}</math>}}
{{Abgesetzte Formel||<math>\begin{align*}\int \ln u \times 2u \, du &= u^2 \ln u - \int u^2 \, \frac{1}{u} \, du = u^2 \ln u - \int u\, du\\[4pt] &= u^2 \ln u - \frac{u^2}{2} + C = x \ln \sqrt{x} - \frac {x}{2} + C\\[4pt] &= x \bigl( \ln \sqrt{x} - \tfrac{1}{2} \bigr) + C\,\mbox{.}\end{align*}</math>}}
-
''Hinweis:'' Alternativ kann man den Integrand wie <math>\ln\sqrt{x} = \tfrac{1}{2}\ln x</math> schreiben, und die Produkte <math>\tfrac{1}{2}\,\ln x</math> mit partieller Integration integrieren.
+
''Hinweis:'' Eine andere Möglichkeit besteht darin, den Integrand als <math>\ln\sqrt{x} = \tfrac{1}{2}\ln x</math> zu schreiben, und die Produkte <math>\tfrac{1}{2}\,\ln x</math> mit partieller Integration zu integrieren.
</div>
</div>

Version vom 22:24, 6. Jun. 2009

       Theorie          Übungen      

Inhalt:

  • Partielle Integration.

Lernziele:

Nach diesem Abschnitt sollten Sie folgendes können:

  • Die Herleitung der partiellen Integration verstehen.
  • Integrale durch partielle Integration, kombiniert mit Substitutionen, lösen.

Partielle Integration

Partielle Integration kann hilfreich sein, um Produkte zu integrieren. Die Methode stammt von der Ableitungsregel für Produkte. Wir lassen \displaystyle u und \displaystyle v zwei ableitbare Funktionen sein und erhalten durch die Faktorregel die Ableitung

\displaystyle D\,(\,u\, v) = u^{\,\prime} \, v + u \, v'\,\mbox{.}

Wenn wir jetzt beide Seiten integrieren, erhalten wir

\displaystyle u \, v = \int (\,u^{\,\prime} \, v + u \, v'\,)\,dx = \int u^{\,\prime} \, v\,dx + \int u\, v'\,dx

und so erhalten wir die Regel für partielle Integration.

Partielle Integration:

\displaystyle \int u \, v'\,dx = u \, v - \int u^{\,\prime} \, v\,dx\,\mbox{.}

Wenn man Probleme mit partieller Integration löst, erhofft man sich, dass das Integral \displaystyle \,\int u^{\,\prime} \, v\,dx\ einfacher zu berechnen ist als \displaystyle \,\int u \, v'\,dx\ . Hier ist \displaystyle v eine beliebige Stammfunktion von \displaystyle v' (am liebsten die einfachste) und \displaystyle u' ist die Ableitung von \displaystyle u.

Obwohl partielle Integration sehr hilfreich sein kann, gibt es keine Garantie, dass es zu einem einfacheren Integral führt. Oft muss man sorgfältig wählen, welche Funktion \displaystyle u sein soll, und welche \displaystyle v' sein soll. Das folgende Beispiel zeigt,wie man vorgeht.

Beispiel 1

Bestimmen Sie das Integral \displaystyle \,\int x \, \sin x \, dx\,.

Wenn wir \displaystyle u=\sin x und \displaystyle v'=x wählen, erhalten wir \displaystyle u'=\cos x und \displaystyle v=x^2/2, und wir erhalten durch die Formel für partielle Integration

\displaystyle \int x \, \sin x \, dx = \frac{x^2}{2} \, \sin x - \int \frac{x^2}{2} \, \cos x \, dx\,\mbox{.}

Dieses Integral ist aber nicht einfacher zu lösen als das ursprüngliche Integral.

Wenn wir aber \displaystyle u=x und \displaystyle v'=\sin x wählen, wird \displaystyle u'=1 und \displaystyle v=-\cos x,

\displaystyle \int x \, \sin x \, dx = - x \, \cos x - \int - 1 \times \cos x \, dx = - x\cos x + \sin x + C\,\mbox{.}

Beispiel 2

Bestimmen Sie das Integral \displaystyle \ \int x^2 \, \ln x \, dx\,.

Wir wählen \displaystyle u=\ln x und \displaystyle v'=x^2, nachdem wir durch Ableitung die Logarithmusfunktion loswerden. Nachdem \displaystyle u'=1/x und \displaystyle v=x^3/3 erhalten wir

\displaystyle \begin{align*}\int x^2 \, \ln x \, dx &= \frac {x^3}{3} \, \ln x - \int \frac{x^3}{3} \, \frac{1}{x} \, dx = \frac {x^3}{3} \, \ln x - \frac{1}{3} \int x^2 \, dx\\[4pt] &= \frac{x^3}{3} \, \ln x - \frac{1}{3} \, \frac{x^3}{3} + C = \tfrac{1}{3}x^3 ( \ln x - \tfrac{1}{3} ) + C\,\mbox{.}\end{align*}

Beispiel 3

Bestimmen Sie das Integral \displaystyle \ \int x^2 e^x \, dx\,.

Wir wählen \displaystyle u=x^2 und \displaystyle v'=e^x, und daher ist \displaystyle u'=2x und \displaystyle v=e^x. Durch partielle Integration erhalten wir

\displaystyle \int x^2 e^x \, dx = x^2 e^x - \int 2x\,e^x \, dx\,\mbox{.}

Wir müssen uns hier noch einmal partieller Integration anwenden, um das Integral \displaystyle \,\int 2x\,e^x \, dx zu berechnen. Hier wählen wir \displaystyle u=2x und \displaystyle v'=e^x, und daher ist \displaystyle u'=2 und \displaystyle v=e^x:

\displaystyle \int 2x\,e^x \, dx = 2x\,e^x - \int 2 e^x \, dx = 2x\,e^x - 2 e^x + C\,\mbox{.}

Das ursprüngliche Integral ist

\displaystyle \int x^2 e^x \, dx = x^2 e^x - 2x\,e^x + 2 e^x + C\,\mbox{.}

Beispiel 4

Bestimmen Sie das Integral \displaystyle \ \int e^x \cos x \, dx\,.

Wir integrieren den Faktor \displaystyle e^x und leiten den Faktor \displaystyle \cos x ab,

\displaystyle \begin{align*}\int e^x \cos x \, dx &= e^x \, \cos x - \int e^x \,(-\sin x) \, dx\\[10pt] &= e^x \cos x + \int e^x \sin x \, dx\,\mbox{.}\end{align*}

Dieses Integral berechnen wir durch partielle Integration, indem wir den Faktor \displaystyle e^x integrieren und den Faktor \displaystyle \sin x ableiten.

\displaystyle \int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx\,\mbox{.}

Hier erscheint wieder unser ursprüngliches Integral.

Wir haben also

\displaystyle \int e^x \cos x \, dx = e^x \cos x + e^x \sin x - \int e^x \cos x \, dx

Sammeln wir alle Terme auf einer Seite, erhalten wir

\displaystyle \int e^x \cos x \, dx = {\textstyle\frac{1}{2}}e^x ( \cos x + \sin x) + C\,\mbox{.}

Hier erhielten wir kein einfacheres Integral durch die partielle Integration, aber wir erhielten eine Gleichung, die wir für unser Integral lösen konnten. Dies kommt nicht selten vor, wenn man trigonometrische Funktionen und Exponentialfunktionen integriert.

Beispiel 5

Bestimmen Sie das Integral \displaystyle \ \int_{0}^{1} \frac{2x}{e^x} \, dx\,.

Das Integral kann als

\displaystyle \int_{0}^{1} \frac{2x}{e^x} \, dx = \int_{0}^{1} 2x \, e^{-x} \, dx\,\mbox{.}

geschrieben werden. Wählen wir \displaystyle u=2x und \displaystyle v'=e^{-x}, erhalten wir durch partielle Integration

\displaystyle \begin{align*}\int_{0}^{1} 2x \, e^{-x} \, dx &= \Bigl[\,-2x\,e^{-x}\,\Bigr]_{0}^{1} + \int_{0}^{1} 2 e^{-x}\,dx\\[4pt] &= \Bigl[\,-2x e^{-x}\,\Bigr]_{0}^{1} + \Bigl[\,-2 e^{-x}\, \Bigr]_{0}^{1}\\[4pt] &= (-2 \, e^{-1}) - 0 + (- 2\, e^{-1}) - (-2)\\[4pt] &= - \frac{2}{e} - \frac{2}{e} + 2 = 2 - \frac{4}{e}\,\mbox{.}\end{align*}

Beispiel 6

Bestimmen Sie das Integral \displaystyle \ \int \ln \sqrt{x} \ dx\,.

Zuerst machen wir die Substitution \displaystyle u=\sqrt{x}, wodurch wir \displaystyle du=dx/2\sqrt{x} = dx/2u erhalten. Also ist \displaystyle dx = 2u\,du\,, und wir erhalten das Integral

\displaystyle \int \ln \sqrt{x} \, dx = \int \ln u \times 2u \, du\,\mbox{.}

Danach wenden wir partielle Integration an. Wir leiten den Faktor \displaystyle \ln u ab, und integrieren den Faktor \displaystyle 2u

\displaystyle \begin{align*}\int \ln u \times 2u \, du &= u^2 \ln u - \int u^2 \, \frac{1}{u} \, du = u^2 \ln u - \int u\, du\\[4pt] &= u^2 \ln u - \frac{u^2}{2} + C = x \ln \sqrt{x} - \frac {x}{2} + C\\[4pt] &= x \bigl( \ln \sqrt{x} - \tfrac{1}{2} \bigr) + C\,\mbox{.}\end{align*}


Hinweis: Eine andere Möglichkeit besteht darin, den Integrand als \displaystyle \ln\sqrt{x} = \tfrac{1}{2}\ln x zu schreiben, und die Produkte \displaystyle \tfrac{1}{2}\,\ln x mit partieller Integration zu integrieren.