Lösung 1.2:1e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:1e moved to Solution 1.2:1e: Robot: moved page)
Aktuelle Version (19:13, 18. Apr. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The quotient rule gives
+
Durch die Quotientenregel erhalten wir
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>\begin{align}
+
\Bigl(\frac{x}{\ln x}\Bigr)'
-
& \left( \frac{x}{\ln x} \right)^{\prime }=\frac{\left( x \right)^{\prime }\centerdot \ln x-x\centerdot \left( \ln x \right)^{\prime }}{\left( \ln x \right)^{2}} \\
+
&= \frac{(x)'\cdot \ln x - x\cdot (\ln x)'}{(\ln x)^2}\\[5pt]
-
& \\
+
&= \frac{1\cdot\ln x - x\cdot\dfrac{1}{x}}{(\ln x)^2}\\[5pt]
-
& =\frac{1\centerdot \ln x-x\centerdot \frac{1}{x}}{\left( \ln x \right)^{2}}=\frac{\ln x-1}{\left( \ln x \right)^{2}}=\frac{1}{\ln x}-\frac{1}{\left( \ln x \right)^{2}} \\
+
&= \frac{\ln x-1}{(\ln x)^2}\\[5pt]
-
\end{align}</math>
+
&= \frac{1}{\ln x} - \frac{1}{(\ln x)^2}\,\textrm{.}
 +
\end{align}</math>}}

Aktuelle Version

Durch die Quotientenregel erhalten wir

\displaystyle \begin{align}

\Bigl(\frac{x}{\ln x}\Bigr)' &= \frac{(x)'\cdot \ln x - x\cdot (\ln x)'}{(\ln x)^2}\\[5pt] &= \frac{1\cdot\ln x - x\cdot\dfrac{1}{x}}{(\ln x)^2}\\[5pt] &= \frac{\ln x-1}{(\ln x)^2}\\[5pt] &= \frac{1}{\ln x} - \frac{1}{(\ln x)^2}\,\textrm{.} \end{align}