Lösung 3.2:2b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Solution 3.2:2b moved to Lösung 3.2:2b: Robot: moved page) |
Version vom 10:35, 11. Mär. 2009
The inequality \displaystyle 0\leq \mathop{\rm Re} z \leq \mathop{\rm Im} z \leq 1 is actually several inequalities:
- \displaystyle 0 \leq \mathop{\rm Re} z \leq 1\,,
- \displaystyle 0 \leq \mathop{\rm Im}z \leq 1\,,
- \displaystyle \mathop{\rm Re}z \leq \mathop{\rm Im}z\,\textrm{.}
The first two inequalities in this list define the unit square in the complex number plane.
The last inequality says that the real part of \displaystyle z should be less than or equal to the imaginary part of \displaystyle z, i.e. \displaystyle z should lie to the left of the line \displaystyle y=x if \displaystyle x=\mathop{\rm Re} z and \displaystyle y = \mathop{\rm Im} z.
All together, the inequalities define the region which the unit square and the half-plane have in common: a triangle with corner points at \displaystyle 0, \displaystyle i and \displaystyle 1+i.