3.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Theory +Theorie))
K (Robot: Automated text replacement (-Answer +Antwort))
Zeile 21: Zeile 21:
|width="50%"| <math>z-\overline{w}+u</math>
|width="50%"| <math>z-\overline{w}+u</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.2:1|Solution a|Solution 3.2:1a|Solution b|Solution 3.2:1b|Solution c|Solution 3.2:1c|Solution d|Solution 3.2:1d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.2:1|Solution a|Solution 3.2:1a|Solution b|Solution 3.2:1b|Solution c|Solution 3.2:1c|Solution d|Solution 3.2:1d}}
===Übung 3.2:2===
===Übung 3.2:2===
Zeile 42: Zeile 42:
|width="50%"| <math>2<|z-i|\le3</math>
|width="50%"| <math>2<|z-i|\le3</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.2:2|Solution a|Solution 3.2:2a|Solution b|Solution 3.2:2b|Solution c|Solution 3.2:2c|Solution d|Solution 3.2:2d|Solution e|Solution 3.2:2e|Solution f|Solution 3.2:2f}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.2:2|Solution a|Solution 3.2:2a|Solution b|Solution 3.2:2b|Solution c|Solution 3.2:2c|Solution d|Solution 3.2:2d|Solution e|Solution 3.2:2e|Solution f|Solution 3.2:2f}}
===Übung 3.2:3===
===Übung 3.2:3===
<div class="ovning">
<div class="ovning">
The complex numbers <math>\,1+i\,</math>, <math>\,3+2i\,</math> and <math>\,3i\,</math> constitute three corners of a square in the complex number plane. Determine the square's fourth corner.
The complex numbers <math>\,1+i\,</math>, <math>\,3+2i\,</math> and <math>\,3i\,</math> constitute three corners of a square in the complex number plane. Determine the square's fourth corner.
-
</div>{{#NAVCONTENT:Answer|Answer 3.2:3|Solution|Solution 3.2:3}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.2:3|Solution|Solution 3.2:3}}
===Übung 3.2:4===
===Übung 3.2:4===
Zeile 63: Zeile 63:
|width="50%"| <math>\displaystyle\frac{3-4i}{3+2i}</math>
|width="50%"| <math>\displaystyle\frac{3-4i}{3+2i}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.2:4|Solution a|Solution 3.2:4a|Solution b|Solution 3.2:4b|Solution c|Solution 3.2:4c|Solution d|Solution 3.2:4d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.2:4|Solution a|Solution 3.2:4a|Solution b|Solution 3.2:4b|Solution c|Solution 3.2:4c|Solution d|Solution 3.2:4d}}
===Übung 3.2:5===
===Übung 3.2:5===
Zeile 79: Zeile 79:
|width="50%"| <math>\displaystyle\frac{i}{1+i}</math>
|width="50%"| <math>\displaystyle\frac{i}{1+i}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.2:5|Solution a|Solution 3.2:5a|Solution b|Solution 3.2:5b|Solution c|Solution 3.2:5c|Solution d|Solution 3.2:5d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.2:5|Solution a|Solution 3.2:5a|Solution b|Solution 3.2:5b|Solution c|Solution 3.2:5c|Solution d|Solution 3.2:5d}}
===Übung 3.2:6===
===Übung 3.2:6===
Zeile 100: Zeile 100:
|width="50%"| <math>\displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}</math>
|width="50%"| <math>\displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 3.2:6|Solution a|Solution 3.2:6a|Solution b|Solution 3.2:6b|Solution c|Solution 3.2:6c|Solution d|Solution 3.2:6d|Solution e|Solution 3.2:6e|Solution f|Solution 3.2:6f}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 3.2:6|Solution a|Solution 3.2:6a|Solution b|Solution 3.2:6b|Solution c|Solution 3.2:6c|Solution d|Solution 3.2:6d|Solution e|Solution 3.2:6e|Solution f|Solution 3.2:6f}}

Version vom 13:31, 10. Mär. 2009

       Theorie          Übungen      

Übung 3.2:1

Given the complex numbers \displaystyle \,z=2+i\,, \displaystyle \,w=2+3i\, and \displaystyle \,u=-1-2i\,. Mark the following numbers on the complex plane:

a) \displaystyle z\, and \displaystyle \,w b) \displaystyle z+u\, and \displaystyle \,z-u
c) \displaystyle 2z+w d) \displaystyle z-\overline{w}+u

Übung 3.2:2

Draw the following sets in the complex number plane

a) \displaystyle 0\le \mbox{Im}\, z \le 3 b) \displaystyle 0 \le \mbox{Re} \, z \le \mbox{Im}\, z \le 3
c) \displaystyle |z|=2 d) \displaystyle |z-1-i|=3
e) \displaystyle \mbox{Re}\, z = i + \bar z f) \displaystyle 2<|z-i|\le3

Übung 3.2:3

The complex numbers \displaystyle \,1+i\,, \displaystyle \,3+2i\, and \displaystyle \,3i\, constitute three corners of a square in the complex number plane. Determine the square's fourth corner.

Übung 3.2:4

Determine the magnitude of

a) \displaystyle 3+4i b) \displaystyle (2-i) + (5+3i)
c) \displaystyle (3-4i)(3+2i) d) \displaystyle \displaystyle\frac{3-4i}{3+2i}

Übung 3.2:5

Determine the argument of

a) \displaystyle -10 b) \displaystyle -2+2i
c) \displaystyle (\sqrt{3} +i)(1-i) d) \displaystyle \displaystyle\frac{i}{1+i}

Übung 3.2:6

Write the following numbers in polar form

a) \displaystyle 3 b) \displaystyle -11i
c) \displaystyle -4-4i d) \displaystyle \sqrt{10} + \sqrt{30}\,i
e) \displaystyle \displaystyle\frac{1+i\sqrt{3}}{1+i} f) \displaystyle \displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}