1.2 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-Exercises +Übungen)) | K  (Robot: Automated text replacement  (-Theory +Theorie)) | ||
| Zeile 2: | Zeile 2: | ||
| {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| | style="border-bottom:1px solid #000" width="5px" |   | | style="border-bottom:1px solid #000" width="5px" |   | ||
| - | {{Not selected tab|[[1.2 Ableitungsregeln| | + | {{Not selected tab|[[1.2 Ableitungsregeln|Theorie]]}} | 
| {{Selected tab|[[1.2 Übungen|Examples]]}} | {{Selected tab|[[1.2 Übungen|Examples]]}} | ||
| | style="border-bottom:1px solid #000"  width="100%"|   | | style="border-bottom:1px solid #000"  width="100%"|   | ||
Version vom 13:25, 10. Mär. 2009
| Theorie | Examples | 
Example 1.2:1
Calculate the derivative of the following functions and write the answer in simplest possible form:
| a) | \displaystyle \cos x \cdot \sin x | b) | \displaystyle x^2\ln x | c) | \displaystyle \displaystyle\frac{x^2+1}{x+1} | 
| d) | \displaystyle \displaystyle\frac{\sin x}{x} | e) | \displaystyle \displaystyle\frac{x}{\ln x} | f) | \displaystyle \displaystyle\frac{x \ln x}{\sin x} | 
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Example 1.2:2
Calculate the derivative of the following functions and write the answer in simplest possible form:
| a) | \displaystyle \sin x^2 | b) | \displaystyle e^{x^2+x} | c) | \displaystyle \sqrt{\cos x} | 
| d) | \displaystyle \ln \ln x | e) | \displaystyle x(2x+1)^4 | f) | \displaystyle \cos \sqrt{1-x} | 
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Example 1.2:3
Calculate the derivative of the following functions and write the answer in simplest possible form:
| a) | \displaystyle \ln (\sqrt{x} + \sqrt{x+1}\,) | b) | \displaystyle \sqrt{\displaystyle \frac{x+1}{x-1}} | c) | \displaystyle \displaystyle\frac{1}{x\sqrt{1-x^2}} | 
| d) | \displaystyle \sin \cos \sin x | e) | \displaystyle e^{\sin x^2} | f) | \displaystyle x^{\tan x} | 
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Example 1.2:4
Calculate the second derivative of the following functions and write the answer in simplest possible form:
| a) | \displaystyle \displaystyle\frac{x}{\sqrt{1-x^2}} | b) | \displaystyle x ( \sin \ln x +\cos \ln x ) | 
 
		   Laden...
  Laden...