1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Exercises +Übungen))
K (Robot: Automated text replacement (-Exercise +Übung))
Zeile 7: Zeile 7:
|}
|}
-
===Exercise 1.1:1===
+
===Übung 1.1:1===
<div class="ovning">
<div class="ovning">
{| width="100%"
{| width="100%"
Zeile 28: Zeile 28:
</div>{{#NAVCONTENT:Answer|Answer 1.1:1|Solution a|Solution 1.1:1a|Solution b|Solution 1.1:1b|Solution c|Solution 1.1:1c}}
</div>{{#NAVCONTENT:Answer|Answer 1.1:1|Solution a|Solution 1.1:1a|Solution b|Solution 1.1:1b|Solution c|Solution 1.1:1c}}
-
===Exercise 1.1:2===
+
===Übung 1.1:2===
<div class="ovning">
<div class="ovning">
Determine the derivative <math>f^{\,\prime}(x)</math> when
Determine the derivative <math>f^{\,\prime}(x)</math> when
Zeile 48: Zeile 48:
</div>{{#NAVCONTENT:Answer|Answer 1.1:2|Solution a|Solution 1.1:2a|Solution b|Solution 1.1:2b|Solution c|Solution 1.1:2c|Solution d|Solution 1.1:2d|Solution e|Solution 1.1:2e|Solution f|Solution 1.1:2f}}
</div>{{#NAVCONTENT:Answer|Answer 1.1:2|Solution a|Solution 1.1:2a|Solution b|Solution 1.1:2b|Solution c|Solution 1.1:2c|Solution d|Solution 1.1:2d|Solution e|Solution 1.1:2e|Solution f|Solution 1.1:2f}}
-
===Exercise 1.1:3===
+
===Übung 1.1:3===
<div class="ovning">
<div class="ovning">
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
Zeile 54: Zeile 54:
</div>{{#NAVCONTENT:Answer|Answer 1.1:3|Solution |Solution 1.1:3}}
</div>{{#NAVCONTENT:Answer|Answer 1.1:3|Solution |Solution 1.1:3}}
-
===Exercise 1.1:4===
+
===Übung 1.1:4===
<div class="ovning">
<div class="ovning">
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
Zeile 60: Zeile 60:
</div>{{#NAVCONTENT:Answer|Answer 1.1:4|Solution |Solution 1.1:4}}
</div>{{#NAVCONTENT:Answer|Answer 1.1:4|Solution |Solution 1.1:4}}
-
===Exercise 1.1:5===
+
===Übung 1.1:5===
<div exercise ="ovning">
<div exercise ="ovning">
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
</div>{{#NAVCONTENT:Answer|Answer 1.1:5|Solution |Solution 1.1:5}}
</div>{{#NAVCONTENT:Answer|Answer 1.1:5|Solution |Solution 1.1:5}}

Version vom 13:23, 10. Mär. 2009

       Theory          Übungen      

Übung 1.1:1

The graph for \displaystyle f(x) is shown in the figure.

a) What are the signs of \displaystyle f^{\,\prime}(-4) and \displaystyle f^{\,\prime}(1)?
b) For what values of \displaystyle x is \displaystyle f^{\,\prime}(x)=0?
c) In which interval(s) is \displaystyle f^{\,\prime}(x) negative?

(Each square in the grid of the figure has width and height 1.)

1.1 - Figure - The graph of f(x) in exercise 1.1:1

Übung 1.1:2

Determine the derivative \displaystyle f^{\,\prime}(x) when

a) \displaystyle f(x) = x^2 -3x +1 b) \displaystyle f(x)=\cos x -\sin x c) \displaystyle f(x)= e^x-\ln x
d) \displaystyle f(x)=\sqrt{x} e) \displaystyle f(x) = (x^2-1)^2 f) \displaystyle f(x)= \cos (x+\pi/3)

Übung 1.1:3

A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?

Übung 1.1:4

Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).

Übung 1.1:5

Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).