Lösung 3.3:2e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
| Zeile 1: | Zeile 1: | ||
If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation | If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation | ||
| - | {{ | + | {{Abgesetzte Formel||<math>w^2=-1\,\textrm{.}</math>}} |
We know already that this equation has roots | We know already that this equation has roots | ||
| - | {{ | + | {{Abgesetzte Formel||<math>w=\left\{\begin{align} |
-i\,,&\\[5pt] | -i\,,&\\[5pt] | ||
i\,,& | i\,,& | ||
| Zeile 12: | Zeile 12: | ||
so <math>z</math> should satisfy one of the equation's | so <math>z</math> should satisfy one of the equation's | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}} |
We solve these equations one by one. | We solve these equations one by one. | ||
| Zeile 21: | Zeile 21: | ||
:Multiply both sides by <math>z-i</math>, | :Multiply both sides by <math>z-i</math>, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>z+i=-i(z-i)\,\textrm{.}</math>}} |
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>z+iz=-1-i\,\textrm{.}</math>}} |
:This gives | :This gives | ||
| - | {{ | + | {{Abgesetzte Formel||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}} |
| Zeile 36: | Zeile 36: | ||
:Multiply both sides by <math>z-i</math>, | :Multiply both sides by <math>z-i</math>, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>z+i=i(z-i)\,\textrm{.}</math>}} |
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>z-iz=1-i\,\textrm{.}</math>}} |
:This gives | :This gives | ||
| - | {{ | + | {{Abgesetzte Formel||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}} |
The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>. | The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>. | ||
Version vom 13:12, 10. Mär. 2009
If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation
| \displaystyle w^2=-1\,\textrm{.} |
We know already that this equation has roots
| \displaystyle w=\left\{\begin{align}
-i\,,&\\[5pt] i\,,& \end{align}\right. |
so \displaystyle z should satisfy one of the equation's
| \displaystyle \frac{z+i}{z-i}=-i\quad or \displaystyle \quad\frac{z+i}{z-i}=i\,\textrm{.} |
We solve these equations one by one.
- \displaystyle (z+i)/(z-i)=-i:
- Multiply both sides by \displaystyle z-i,
| \displaystyle z+i=-i(z-i)\,\textrm{.} |
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
| \displaystyle z+iz=-1-i\,\textrm{.} |
- This gives
| \displaystyle z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.} |
- \displaystyle (z+i)/(z-i)=i:
- Multiply both sides by \displaystyle z-i,
| \displaystyle z+i=i(z-i)\,\textrm{.} |
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
| \displaystyle z-iz=1-i\,\textrm{.} |
- This gives
| \displaystyle z = \frac{1-i}{1-i} = 1\,\textrm{.} |
The solutions are therefore \displaystyle z=-1 and \displaystyle z=1\,.
