Lösung 3.2:6d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We can determine the number's magnitude directly using the distance formula, | We can determine the number's magnitude directly using the distance formula, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\bigl|\sqrt{10}+\sqrt{30}i\bigr| | \bigl|\sqrt{10}+\sqrt{30}i\bigr| | ||
&= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] | &= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] | ||
Zeile 16: | Zeile 16: | ||
The polar form is | The polar form is | ||
- | {{ | + | {{Abgesetzte Formel||<math>2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}</math>}} |
Version vom 13:10, 10. Mär. 2009
We can determine the number's magnitude directly using the distance formula,
\displaystyle \begin{align}
\bigl|\sqrt{10}+\sqrt{30}i\bigr| &= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] &= \sqrt{10+30}\\[5pt] &= \sqrt{40}\\[5pt] &= \sqrt{4\cdot 10}\\[5pt] &= 2\sqrt{10}\,\textrm{.} \end{align} |
In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.
The polar form is
\displaystyle 2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.} |