Lösung 3.1:4f
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Because the equation contains both <math>z</math> and <math>\bar{z}</math>, we cannot use <math>z</math> (or <math>\bar{z}</math>) alone as an unknown, so we are forced to set | Because the equation contains both <math>z</math> and <math>\bar{z}</math>, we cannot use <math>z</math> (or <math>\bar{z}</math>) alone as an unknown, so we are forced to set | ||
- | {{ | + | {{Abgesetzte Formel||<math>z=x+iy</math>}} |
and use the real part <math>x</math> and the imaginary part <math>y</math> as unknowns. | and use the real part <math>x</math> and the imaginary part <math>y</math> as unknowns. | ||
Zeile 7: | Zeile 7: | ||
With this approach, the left-hand side of the equation becomes | With this approach, the left-hand side of the equation becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(1+i)(x-iy)+i(x+iy) | (1+i)(x-iy)+i(x+iy) | ||
&= 1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\[5pt] | &= 1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\[5pt] | ||
Zeile 16: | Zeile 16: | ||
and the whole equation becomes | and the whole equation becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>x+(2x-y)i=3+5i\,\textrm{.}</math>}} |
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e. | The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e. | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align}x\phantom{{}-y}{}&=3\,,\\[5pt] 2x-y&=5\,\textrm{.}\end{align}\right.</math>}} |
This gives <math>x=3</math> and <math>y=2x-5=2\cdot 3-5=1</math>. Thus, the equation has the solution <math>z=3+i</math>. | This gives <math>x=3</math> and <math>y=2x-5=2\cdot 3-5=1</math>. Thus, the equation has the solution <math>z=3+i</math>. | ||
Zeile 26: | Zeile 26: | ||
A quick check shows that <math>z=3+i</math> satisfies the equation in the exercise, | A quick check shows that <math>z=3+i</math> satisfies the equation in the exercise, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{LHS} | \text{LHS} | ||
&= (1+i)\bar{z}+iz\\[5pt] | &= (1+i)\bar{z}+iz\\[5pt] |
Version vom 13:07, 10. Mär. 2009
Because the equation contains both \displaystyle z and \displaystyle \bar{z}, we cannot use \displaystyle z (or \displaystyle \bar{z}) alone as an unknown, so we are forced to set
\displaystyle z=x+iy |
and use the real part \displaystyle x and the imaginary part \displaystyle y as unknowns.
With this approach, the left-hand side of the equation becomes
\displaystyle \begin{align}
(1+i)(x-iy)+i(x+iy) &= 1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\[5pt] &= x-iy+ix+y+ix-y\\[5pt] &= x+(2x-y)i \end{align} |
and the whole equation becomes
\displaystyle x+(2x-y)i=3+5i\,\textrm{.} |
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.
\displaystyle \left\{\begin{align}x\phantom{{}-y}{}&=3\,,\\[5pt] 2x-y&=5\,\textrm{.}\end{align}\right. |
This gives \displaystyle x=3 and \displaystyle y=2x-5=2\cdot 3-5=1. Thus, the equation has the solution \displaystyle z=3+i.
A quick check shows that \displaystyle z=3+i satisfies the equation in the exercise,
\displaystyle \begin{align}
\text{LHS} &= (1+i)\bar{z}+iz\\[5pt] &= (1+i)(3-i)+i(3+i)\\[5pt] &= 3-i+3i+1+3i-1\\[5pt] &= 3+5i\\[5pt] &= \text{RHS}\,\textrm{.} \end{align} |