Lösung 3.1:4a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
In this case, we start by subtracting <math>z</math> from both sides, | In this case, we start by subtracting <math>z</math> from both sides, | ||
- | {{ | + | {{Abgesetzte Formel||<math>z+3i-z=2z-2-z\,\textrm{.}</math>}} |
Then we have a <math>z</math> left on the right-hand side, | Then we have a <math>z</math> left on the right-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>3i=z-2\,\textrm{.}</math>}} |
We add <math>2</math> to both sides to remove the <math>-2</math> from the right hand side, | We add <math>2</math> to both sides to remove the <math>-2</math> from the right hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>3i+2=z-2+2\,,</math>}} |
and after that we can just read off the solution, | and after that we can just read off the solution, | ||
- | {{ | + | {{Abgesetzte Formel||<math>2+3i=z\,\textrm{.}</math>}} |
To check that we have calculated correctly, we substitute <math>z=2+3i</math> into the original equation and see that it is satisfied, | To check that we have calculated correctly, we substitute <math>z=2+3i</math> into the original equation and see that it is satisfied, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{LHS} &= z +3i = 2+3i+3i=2+6i\,,\\[5pt] | \text{LHS} &= z +3i = 2+3i+3i=2+6i\,,\\[5pt] | ||
\text{RHS} &= 2z-2 = 2(2+3i)-2 = 4 + 6i -2 = 2+6i\,\textrm{.} | \text{RHS} &= 2z-2 = 2(2+3i)-2 = 4 + 6i -2 = 2+6i\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 13:06, 10. Mär. 2009
A general strategy when solving equations is to try to get the unknown variable by itself on one side.
In this case, we start by subtracting \displaystyle z from both sides,
\displaystyle z+3i-z=2z-2-z\,\textrm{.} |
Then we have a \displaystyle z left on the right-hand side,
\displaystyle 3i=z-2\,\textrm{.} |
We add \displaystyle 2 to both sides to remove the \displaystyle -2 from the right hand side,
\displaystyle 3i+2=z-2+2\,, |
and after that we can just read off the solution,
\displaystyle 2+3i=z\,\textrm{.} |
To check that we have calculated correctly, we substitute \displaystyle z=2+3i into the original equation and see that it is satisfied,
\displaystyle \begin{align}
\text{LHS} &= z +3i = 2+3i+3i=2+6i\,,\\[5pt] \text{RHS} &= 2z-2 = 2(2+3i)-2 = 4 + 6i -2 = 2+6i\,\textrm{.} \end{align} |