Lösung 3.1:2a
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator, | A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.}</math>}} |
Then, the formula for the difference of two squares gives that the new denominator is a real number, | Then, the formula for the difference of two squares gives that the new denominator is a real number, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{3-2i}{1+i}\cdot\frac{1-i}{1-i} | \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i} | ||
&= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt] | &= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt] | ||
Zeile 15: | Zeile 15: | ||
All that remains is to multiply together what is in the numerator, | All that remains is to multiply together what is in the numerator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{(3-2i)(1-i)}{2} | \frac{(3-2i)(1-i)}{2} | ||
&= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt] | &= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt] |
Version vom 13:05, 10. Mär. 2009
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator,
\displaystyle \frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.} |
Then, the formula for the difference of two squares gives that the new denominator is a real number,
\displaystyle \begin{align}
\frac{3-2i}{1+i}\cdot\frac{1-i}{1-i} &= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt] &= \frac{(3-2i)(1-i)}{1^2-i^2}\\[5pt] &= \frac{(3-2i)(1-i)}{1+1}\\[5pt] &= \frac{(3-2i)(1-i)}{2}\,\textrm{.} \end{align} |
All that remains is to multiply together what is in the numerator,
\displaystyle \begin{align}
\frac{(3-2i)(1-i)}{2} &= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt] &= \frac{3-3i-2i+2i^2}{2}\\[5pt] &= \frac{3-(3+2)i+2\cdot (-1)}{2}\\[5pt] &= \frac{1-5i}{2}\\[5pt] &= \frac{1}{2}-\frac{5}{2}\,i\,\textrm{.} \end{align} |