Lösung 3.1:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator,
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator,
-
{{Displayed math||<math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.}</math>}}
Then, the formula for the difference of two squares gives that the new denominator is a real number,
Then, the formula for the difference of two squares gives that the new denominator is a real number,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}
\frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}
&= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt]
&= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt]
Zeile 15: Zeile 15:
All that remains is to multiply together what is in the numerator,
All that remains is to multiply together what is in the numerator,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{(3-2i)(1-i)}{2}
\frac{(3-2i)(1-i)}{2}
&= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt]
&= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt]

Version vom 13:05, 10. Mär. 2009

A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator,

\displaystyle \frac{3-2i}{1+i} = \frac{3-2i}{1+i}\cdot\frac{1-i}{1-i}\,\textrm{.}

Then, the formula for the difference of two squares gives that the new denominator is a real number,

\displaystyle \begin{align}

\frac{3-2i}{1+i}\cdot\frac{1-i}{1-i} &= \frac{(3-2i)(1-i)}{(1+i)(1-i)}\\[5pt] &= \frac{(3-2i)(1-i)}{1^2-i^2}\\[5pt] &= \frac{(3-2i)(1-i)}{1+1}\\[5pt] &= \frac{(3-2i)(1-i)}{2}\,\textrm{.} \end{align}

All that remains is to multiply together what is in the numerator,

\displaystyle \begin{align}

\frac{(3-2i)(1-i)}{2} &= \frac{3\cdot 1 -3\cdot i - 2i\cdot 1 - 2i\cdot(-i)}{2}\\[5pt] &= \frac{3-3i-2i+2i^2}{2}\\[5pt] &= \frac{3-(3+2)i+2\cdot (-1)}{2}\\[5pt] &= \frac{1-5i}{2}\\[5pt] &= \frac{1}{2}-\frac{5}{2}\,i\,\textrm{.} \end{align}