Lösung 3.1:1e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it,
A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt]
(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt]
&= 4-4i+i^2\\[5pt]
&= 4-4i+i^2\\[5pt]
Zeile 10: Zeile 10:
After that, we calculate the remaining product,
After that, we calculate the remaining product,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt]
(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt]
&= 3-4i+3i-4i^2\\[5pt]
&= 3-4i+3i-4i^2\\[5pt]

Version vom 13:05, 10. Mär. 2009

A suitable first step can be to work out the square term, \displaystyle (2-i)^2, by expanding it,

\displaystyle \begin{align}

(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] &= 4-4i+i^2\\[5pt] &= 4-4i-1\\[5pt] &= 3-4i\,\textrm{.} \end{align}

After that, we calculate the remaining product,

\displaystyle \begin{align}

(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] &= 3-4i+3i-4i^2\\[5pt] &= 3+(-4+3)i-4\cdot (-1)\\[5pt] &= 3-i+4\\[5pt] &= 7-i\,\textrm{.} \end{align}