Lösung 3.1:1c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that <math>i^2=-1</math>. The distributivity rule gives that
Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that <math>i^2=-1</math>. The distributivity rule gives that
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
i(2+3i)
i(2+3i)
&= i\cdot 2 + i\cdot 3i\\[5pt]
&= i\cdot 2 + i\cdot 3i\\[5pt]

Version vom 13:05, 10. Mär. 2009

Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that \displaystyle i^2=-1. The distributivity rule gives that

\displaystyle \begin{align}

i(2+3i) &= i\cdot 2 + i\cdot 3i\\[5pt] &= 2i+3i^2\\[5pt] &= 2i+3\cdot (-1)\\[5pt] &= 2i-3\\[5pt] &= -3+2i\,\textrm{.} \end{align}