Lösung 3.1:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that <math>i^2=-1</math>. The distributivity rule gives that | Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that <math>i^2=-1</math>. The distributivity rule gives that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
i(2+3i) | i(2+3i) | ||
&= i\cdot 2 + i\cdot 3i\\[5pt] | &= i\cdot 2 + i\cdot 3i\\[5pt] |
Version vom 13:05, 10. Mär. 2009
Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that \displaystyle i^2=-1. The distributivity rule gives that
\displaystyle \begin{align}
i(2+3i) &= i\cdot 2 + i\cdot 3i\\[5pt] &= 2i+3i^2\\[5pt] &= 2i+3\cdot (-1)\\[5pt] &= 2i-3\\[5pt] &= -3+2i\,\textrm{.} \end{align} |