Lösung 1.2:1d
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We have a quotient between <math>\sin x</math> and <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule, | We have a quotient between <math>\sin x</math> and <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\Bigl(\frac{\sin x}{x}\Bigr)' | \Bigl(\frac{\sin x}{x}\Bigr)' | ||
&= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] | &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] | ||
Zeile 11: | Zeile 11: | ||
<math>1/x</math>, and to use the product rule, | <math>1/x</math>, and to use the product rule, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\Bigl(\sin x\cdot\frac{1}{x}\Bigr)' | \Bigl(\sin x\cdot\frac{1}{x}\Bigr)' | ||
&= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] | &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] | ||
Zeile 20: | Zeile 20: | ||
where we have used | where we have used | ||
- | {{ | + | {{Abgesetzte Formel||<math>\Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.}</math>}} |
Version vom 12:52, 10. Mär. 2009
We have a quotient between \displaystyle \sin x and \displaystyle x, and therefore one way to differentiate the expression is to use the quotient rule,
\displaystyle \begin{align}
\Bigl(\frac{\sin x}{x}\Bigr)' &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] &= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{.} \end{align} |
It is also possible to see the expression as a product of \displaystyle \sin x and \displaystyle 1/x, and to use the product rule,
\displaystyle \begin{align}
\Bigl(\sin x\cdot\frac{1}{x}\Bigr)' &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] &= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,, \end{align} |
where we have used
\displaystyle \Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.} |