Lösung 1.2:1d
Aus Online Mathematik Brückenkurs 2
| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| We have a quotient between <math>\sin x</math> and <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule, | We have a quotient between <math>\sin x</math> and <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \Bigl(\frac{\sin x}{x}\Bigr)' | \Bigl(\frac{\sin x}{x}\Bigr)' | ||
| &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] | &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] | ||
| Zeile 11: | Zeile 11: | ||
| <math>1/x</math>, and to use the product rule, | <math>1/x</math>, and to use the product rule, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \Bigl(\sin x\cdot\frac{1}{x}\Bigr)' | \Bigl(\sin x\cdot\frac{1}{x}\Bigr)' | ||
| &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt]  | &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt]  | ||
| Zeile 20: | Zeile 20: | ||
| where we have used | where we have used | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.}</math>}} | 
Version vom 12:52, 10. Mär. 2009
We have a quotient between \displaystyle \sin x and \displaystyle x, and therefore one way to differentiate the expression is to use the quotient rule,
| \displaystyle \begin{align} \Bigl(\frac{\sin x}{x}\Bigr)' &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] &= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{.} \end{align} | 
It is also possible to see the expression as a product of \displaystyle \sin x and \displaystyle 1/x, and to use the product rule,
| \displaystyle \begin{align} \Bigl(\sin x\cdot\frac{1}{x}\Bigr)' &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] &= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,, \end{align} | 
where we have used
| \displaystyle \Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.} | 
 
		  