Lösung 1.2:1a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Because the expression is a product of two factors, we use the product rule,
Because the expression is a product of two factors, we use the product rule,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(\sin x\cdot\cos x)^{\prime }
(\sin x\cdot\cos x)^{\prime }
&= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt]
&= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt]

Version vom 12:51, 10. Mär. 2009

Because the expression is a product of two factors, we use the product rule,

\displaystyle \begin{align}

(\sin x\cdot\cos x)^{\prime } &= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] &= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt] &= -\sin^2\!x + \cos^2\!x\,\textrm{.} \end{align}

Using the formula for double angles, the answer can be simplified to \displaystyle \cos 2x\,.