Lösung 1.2:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Because the expression is a product of two factors, we use the product rule, | Because the expression is a product of two factors, we use the product rule, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(\sin x\cdot\cos x)^{\prime } | (\sin x\cdot\cos x)^{\prime } | ||
&= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] | &= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] |
Version vom 12:51, 10. Mär. 2009
Because the expression is a product of two factors, we use the product rule,
\displaystyle \begin{align}
(\sin x\cdot\cos x)^{\prime } &= (\cos x)^{\prime }\cdot\sin x + \cos x\cdot (\sin x)^{\prime }\\[5pt] &= -\sin x\cdot\sin x + \cos x\cdot\cos x\\[5pt] &= -\sin^2\!x + \cos^2\!x\,\textrm{.} \end{align} |
Using the formula for double angles, the answer can be simplified to \displaystyle \cos 2x\,.