Lösung 1.1:2f
Aus Online Mathematik Brückenkurs 2
| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| We can rewrite the function using a trigonometric addition formula, | We can rewrite the function using a trigonometric addition formula, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}} | 
| If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain | If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| f^{\,\prime}(x) | f^{\,\prime}(x) | ||
| &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt]  | &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt]  | ||
| Zeile 14: | Zeile 14: | ||
| If we then use the addition formula in reverse, this gives | If we then use the addition formula in reverse, this gives | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| f^{\,\prime}(x) | f^{\,\prime}(x) | ||
| &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt]  | &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt]  | ||
Version vom 12:51, 10. Mär. 2009
We can rewrite the function using a trigonometric addition formula,
| \displaystyle f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.} | 
If we now differentiate this expression, \displaystyle \cos (\pi/3) and \displaystyle \sin (\pi/3) are constants and we obtain
| \displaystyle \begin{align} f^{\,\prime}(x) &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] &= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt] &= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.} \end{align} | 
If we then use the addition formula in reverse, this gives
| \displaystyle \begin{align} f^{\,\prime}(x) &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] &= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.} \end{align} | 
Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.
 
		  