Lösung 3.3:5a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the root.
+
Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the square root.
-
We complete the square on the left-hand side:
+
We complete the square on the left-hand side,
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \left( z-\left( 1+i \right) \right)^{2}-\left( 1+i \right)^{2}+2i-1=0 \\
+
-
& \left( z-\left( 1+i \right) \right)^{2}-\left( 1+2i+i^{2} \right)+2i-1=0 \\
+
-
& \left( z-\left( 1+i \right) \right)^{2}-1-2i+1+2i-1=0 \\
+
-
& \left( z-\left( 1+i \right) \right)^{2}-1=0 \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
(z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt]
 +
(z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt]
 +
(z-(1+i))^2-1-2i+1+2i-1 &= 0\,,\\[5pt]
 +
(z-(1+i))^2-1 &= 0\,\textrm{.}
 +
\end{align}</math>}}
Now, we see that the equation has the solutions
Now, we see that the equation has the solutions
 +
{{Displayed math||<math>z-(1+i) = \pm 1\quad \Leftrightarrow \quad z=\left\{ \begin{align}
 +
&2+i\,,\\
 +
&i\,\textrm{.}
 +
\end{align}\right.</math>}}
-
<math>z-\left( 1+i \right)=\pm 1\quad \Leftrightarrow \quad \left\{ \begin{array}{*{35}l}
+
We test the solutions,
-
2+i \\
+
-
i\text{ } \\
+
-
\end{array} \right.</math>
+
-
 
+
-
 
+
-
We test the solutions:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& z=2+i:\quad z^{2}-2\left( 1+i \right)z+2i-1 \\
+
-
& =\left( 2+i \right)^{2}-2\left( 1+i \right)\left( 2+i \right)+2i-1 \\
+
-
& =4+4i+i^{2}-2\left( 2+i+2i+i^{2} \right)+2i-1 \\
+
-
& =4+4i-1-4-6i+2+2i-1=0 \\
+
-
& \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
<math>\begin{align}
<math>\begin{align}
-
& z=i:\quad z^{2}-2\left( 1+i \right)z+2i-1 \\
+
z=2+i:\quad z^2-2(1+i)z+2i-1
-
& =i^{2}-2\left( 1+i \right)i+2i-1 \\
+
&= (2+i)^2 - 2(1+i)(2+i)+2i-1\\[5pt]
-
& =-1-2\left( i+i^{2} \right)+2i-1 \\
+
&= 4+4i+i^2-2(2+i+2i+i^2)+2i-1\\[5pt]
-
& =-1-2i+2+2i-1=0 \\
+
&= 4+4i-1-4-6i+2+2i-1\\[5pt]
 +
&= 0\,,\\[10pt]
 +
z={}\rlap{i:}\phantom{2+i:}{}\quad z^2-2(1+i)z+2i-1
 +
&= i^2-2(1+i)i+2i-1\\[5pt]
 +
&= -1-2(i+i^2)+2i-1\\[5pt]
 +
&= -1-2i+2+2i-1\\[5pt]
 +
&= 0\,\textrm{.}
\end{align}</math>
\end{align}</math>

Version vom 15:20, 30. Okt. 2008

Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the square root.

We complete the square on the left-hand side,

\displaystyle \begin{align}

(z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt] (z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt] (z-(1+i))^2-1-2i+1+2i-1 &= 0\,,\\[5pt] (z-(1+i))^2-1 &= 0\,\textrm{.} \end{align}

Now, we see that the equation has the solutions

\displaystyle z-(1+i) = \pm 1\quad \Leftrightarrow \quad z=\left\{ \begin{align}

&2+i\,,\\ &i\,\textrm{.} \end{align}\right.

We test the solutions,

\displaystyle \begin{align} z=2+i:\quad z^2-2(1+i)z+2i-1 &= (2+i)^2 - 2(1+i)(2+i)+2i-1\\[5pt] &= 4+4i+i^2-2(2+i+2i+i^2)+2i-1\\[5pt] &= 4+4i-1-4-6i+2+2i-1\\[5pt] &= 0\,,\\[10pt] z={}\rlap{i:}\phantom{2+i:}{}\quad z^2-2(1+i)z+2i-1 &= i^2-2(1+i)i+2i-1\\[5pt] &= -1-2(i+i^2)+2i-1\\[5pt] &= -1-2i+2+2i-1\\[5pt] &= 0\,\textrm{.} \end{align}