Lösung 3.3:2b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The The equation
+
The equation <math>z^3=-1</math> is a so-called binomial equation, which we solve by writing both sides in polar form. We have
-
<math>z^{3}=-\text{1 }</math>
+
-
is a so-called binomial equation, which we solve by writing both sides in polar form. We have
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& z=r\left( \cos \alpha +i\sin \alpha \right) \\
+
-
& -1=1\left( \cos \pi +i\sin \pi \right) \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt]
 +
-1 &= 1\,(\cos\pi + i\sin\pi)\,,
 +
\end{align}</math>}}
and, with the help of de Moivre's formula, the equation becomes
and, with the help of de Moivre's formula, the equation becomes
 +
{{Displayed math||<math>r^3(\cos 3\alpha + i\sin 3\alpha) = 1\,(\cos\pi + i\sin\pi)\,\textrm{.}</math>}}
-
<math>r^{3}\left( \cos 3\alpha +i\sin 3\alpha \right)=1\left( \cos \pi +i\sin \pi \right)</math>
+
Both sides are equal when their magnitudes are equal and the arguments differ by a multiple of <math>2\pi</math>,
-
 
+
{{Displayed math||<math>\left\{\begin{align}
-
Both sides are equal when their magnitudes are equal and the arguments differ by a multiple of
+
r^3 &= 1\,,\\[5pt]
-
<math>2\pi </math>,
+
3\alpha &= \pi + 2n\pi\,,\quad\text{(n is an arbitrary integer),}
-
 
+
\end{align}\right.</math>}}
-
 
+
-
<math>\left\{ \begin{array}{*{35}l}
+
-
r^{3}=1 \\
+
-
3\alpha =\pi +2n\pi \quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
+
-
\end{array} \right.</math>
+
which gives that
which gives that
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r &= 1\,\\[5pt]
 +
\alpha &= \frac{\pi}{3}+\frac{2n\pi}{3}\quad\text{(n is an arbitrary integer).}
 +
\end{align}\right.</math>}}
-
<math>\left\{ \begin{array}{*{35}l}
+
For every third integer <math>n</math>, the solution formula gives in principal the same value for the argument (the difference is a multiple of <math>2\pi</math>), so the equation has in reality three solutions (for <math>n=0</math>, <math>1</math> and <math>\text{2}</math>),
-
r=1 \\
+
-
\alpha =\frac{\pi }{3}+\frac{2n\pi }{3}\quad \left( n\text{ an arbitrary integer} \right)\text{ } \\
+
-
\end{array} \right.</math>
+
-
 
+
-
 
+
-
 
+
-
For every third integer
+
-
<math>n</math>, the solution formula gives in principal the same value for the argument (the difference is a multiple of
+
-
<math>2\pi </math>), so the equation has in reality three solutions (for
+
-
<math>n=0,\ 1</math>
+
-
and
+
-
<math>\text{2}</math>):
+
-
 
+
-
 
+
-
<math>z=\left\{ \begin{array}{*{35}l}
+
-
1\centerdot \left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right) \\
+
-
1\centerdot \left( \cos \pi +i\sin \pi \right) \\
+
-
1\centerdot \left( \cos \frac{5\pi }{3}+i\sin \frac{5\pi }{3} \right) \\
+
-
\end{array} \right.=\left\{ \begin{array}{*{35}l}
+
-
\frac{1+i\sqrt{3}}{2} \\
+
-
-1 \\
+
-
\frac{1-i\sqrt{3}}{2} \\
+
-
\end{array} \right.</math>
+
-
 
+
-
We obtain the typical behaviour that the solutions are corner points in a regular polygon (a triangle in this case because the degree of the equation is
+
-
<math>\text{3}</math>).
+
 +
{{Displayed math||<math>z=\left\{\begin{align}
 +
&1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\\[5pt]
 +
&1\cdot \Bigl(\cos\pi + i\sin\pi\Bigr)\\[5pt]
 +
&1\cdot \Bigl(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\Bigr)
 +
\end{align}\right.
 +
=
 +
\left\{\begin{align}
 +
&\frac{1+i\sqrt{3}}{2}\,,\\[5pt]
 +
&-1\vphantom{\bigl(}\,,\\[5pt]
 +
&\frac{1-i\sqrt{3}}{2}\,\textrm{.}
 +
\end{align} \right.</math>}}
 +
We obtain the typical behaviour that the solutions are corner points in a regular polygon (a triangle in this case because the degree of the equation is 3.
[[Image:3_3_2_b.gif|center]]
[[Image:3_3_2_b.gif|center]]

Version vom 12:13, 30. Okt. 2008

The equation \displaystyle z^3=-1 is a so-called binomial equation, which we solve by writing both sides in polar form. We have

\displaystyle \begin{align}

z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] -1 &= 1\,(\cos\pi + i\sin\pi)\,, \end{align}

and, with the help of de Moivre's formula, the equation becomes

\displaystyle r^3(\cos 3\alpha + i\sin 3\alpha) = 1\,(\cos\pi + i\sin\pi)\,\textrm{.}

Both sides are equal when their magnitudes are equal and the arguments differ by a multiple of \displaystyle 2\pi,

\displaystyle \left\{\begin{align}

r^3 &= 1\,,\\[5pt] 3\alpha &= \pi + 2n\pi\,,\quad\text{(n is an arbitrary integer),} \end{align}\right.

which gives that

\displaystyle \left\{\begin{align}

r &= 1\,\\[5pt] \alpha &= \frac{\pi}{3}+\frac{2n\pi}{3}\quad\text{(n is an arbitrary integer).} \end{align}\right.

For every third integer \displaystyle n, the solution formula gives in principal the same value for the argument (the difference is a multiple of \displaystyle 2\pi), so the equation has in reality three solutions (for \displaystyle n=0, \displaystyle 1 and \displaystyle \text{2}),

\displaystyle z=\left\{\begin{align}

&1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\\[5pt] &1\cdot \Bigl(\cos\pi + i\sin\pi\Bigr)\\[5pt] &1\cdot \Bigl(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\Bigr) \end{align}\right. = \left\{\begin{align} &\frac{1+i\sqrt{3}}{2}\,,\\[5pt] &-1\vphantom{\bigl(}\,,\\[5pt] &\frac{1-i\sqrt{3}}{2}\,\textrm{.} \end{align} \right.

We obtain the typical behaviour that the solutions are corner points in a regular polygon (a triangle in this case because the degree of the equation is 3.