Lösung 3.1:1f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | + | Let's begin by calculating some powers of ''i'', | |
- | Let's begin by calculating some powers of i | + | |
- | <math>\begin{align}i^2&=i\cdot i=-1,\\ | + | {{Displayed math||<math>\begin{align} |
- | i^3&=i^2\cdot i = (-1)\cdot i = -i,\\ | + | i^2 &= i\cdot i = -1\,,\\[5pt] |
- | i^4&=i^2\cdot i^2 = (-1)\cdot (-1) = 1.\end{align}</math> | + | i^3 &= i^2\cdot i = (-1)\cdot i = -i\,,\\[5pt] |
+ | i^4 &= i^2\cdot i^2 = (-1)\cdot (-1) = 1\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | Now, we observe that because <math>i^4=1</math>, we can try to factorize <math>i^{11}</math> | + | Now, we observe that because <math>i^4=1</math>, we can try to factorize <math>i^{11}</math> and <math>i^{20}</math> in terms of <math>i^4</math>, |
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | i^{11}&=i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i)=-i\\ | + | i^{11} &= i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i) = -i\,,\\[5pt] |
- | i^{20}&=i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1=1\end{align}</math> | + | i^{20} &= i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1 = 1\,\textrm{.} |
+ | \end{align}</math>}} | ||
The answer becomes | The answer becomes | ||
- | <math>i^{20}+i^{11}=1-i</math> | + | {{Displayed math||<math>i^{20}+i^{11}=1-i\,\textrm{.}</math>}} |
- | + | ||
- | + |
Version vom 15:07, 29. Okt. 2008
Let's begin by calculating some powers of i,
\displaystyle \begin{align}
i^2 &= i\cdot i = -1\,,\\[5pt] i^3 &= i^2\cdot i = (-1)\cdot i = -i\,,\\[5pt] i^4 &= i^2\cdot i^2 = (-1)\cdot (-1) = 1\,\textrm{.} \end{align} |
Now, we observe that because \displaystyle i^4=1, we can try to factorize \displaystyle i^{11} and \displaystyle i^{20} in terms of \displaystyle i^4,
\displaystyle \begin{align}
i^{11} &= i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i) = -i\,,\\[5pt] i^{20} &= i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1 = 1\,\textrm{.} \end{align} |
The answer becomes
\displaystyle i^{20}+i^{11}=1-i\,\textrm{.} |