Lösung 3.1:1d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | + | We expand the expression by multiplying each term in the first bracket with every term in the second bracket, | |
- | We expand the expression by multiplying each term in the first bracket with every term in the second bracket | + | |
- | <math>\begin{align}(3-2i)(7+5i)&=3\cdot 7 + 3 \cdot 5i + \cdots\\ | + | {{Displayed math||<math>\begin{align} |
- | &=3\cdot 7 + 3 \cdot 5i-2i\cdot 7 -2i \cdot 5i.\end{align}</math> | + | (3-2i)(7+5i) |
+ | &= 3\cdot 7 + 3 \cdot 5i + \cdots\\[5pt] | ||
+ | &= 3\cdot 7 + 3 \cdot 5i - 2i\cdot 7 - 2i \cdot 5i\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | Then, we use that <math>i^2=-1</math> and write the real and imaginary parts together | + | Then, we use that <math>i^2=-1</math> and write the real and imaginary parts together, |
- | <math>\begin{align}(3-2i)(7+5i)&=21+15i-14i-10i^2\\ | + | {{Displayed math||<math>\begin{align} |
- | &=21+15i-14i-10\cdot(-1)\\ | + | (3-2i)(7+5i) |
- | &=(21+10)+(15i-14i)\\ | + | &=21+15i-14i-10i^2\\[5pt] |
- | &=31+ | + | &=21+15i-14i-10\cdot(-1)\\[5pt] |
- | &=31+i\end{align}</math> | + | &=(21+10)+(15i-14i)\\[5pt] |
- | + | &=31+(15-14)i\\[5pt] | |
- | + | &=31+i\,\textrm{.} | |
+ | \end{align}</math>}} |
Version vom 14:54, 29. Okt. 2008
We expand the expression by multiplying each term in the first bracket with every term in the second bracket,
\displaystyle \begin{align}
(3-2i)(7+5i) &= 3\cdot 7 + 3 \cdot 5i + \cdots\\[5pt] &= 3\cdot 7 + 3 \cdot 5i - 2i\cdot 7 - 2i \cdot 5i\,\textrm{.} \end{align} |
Then, we use that \displaystyle i^2=-1 and write the real and imaginary parts together,
\displaystyle \begin{align}
(3-2i)(7+5i) &=21+15i-14i-10i^2\\[5pt] &=21+15i-14i-10\cdot(-1)\\[5pt] &=(21+10)+(15i-14i)\\[5pt] &=31+(15-14)i\\[5pt] &=31+i\,\textrm{.} \end{align} |