Lösung 3.4:7b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.4:7b moved to Solution 3.4:7b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
According to the factor theorem, a polynomial that has the zeros
-
<center> [[Image:3_4_7b.gif]] </center>
+
<math>-\text{1}+i</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>-\text{1}-i</math>
 +
must contain the factors
 +
<math>z-\left( -\text{1}+i \right)</math>
 +
and
 +
<math>z-\left( -\text{1}-i \right)</math>. An example of such a polynomial is
 +
 
 +
 
 +
<math>\left( z-\left( -\text{1}+i \right) \right)\left( z-\left( -\text{1}-i \right) \right)=z^{2}+2z+2</math>
 +
 
 +
 
 +
NOTE: If one wants to have all the polynomials which have only these zeros, the answer is
 +
 
 +
 
 +
<math>C\left( z+1-i \right)^{m}\left( z+1+i \right)^{n}</math>
 +
 
 +
 
 +
where
 +
<math>C</math>
 +
is a non-zero constant and
 +
<math>m</math>
 +
and
 +
<math>n</math>
 +
are positive integers.

Version vom 15:55, 28. Okt. 2008

According to the factor theorem, a polynomial that has the zeros \displaystyle -\text{1}+i and \displaystyle -\text{1}-i must contain the factors \displaystyle z-\left( -\text{1}+i \right) and \displaystyle z-\left( -\text{1}-i \right). An example of such a polynomial is


\displaystyle \left( z-\left( -\text{1}+i \right) \right)\left( z-\left( -\text{1}-i \right) \right)=z^{2}+2z+2


NOTE: If one wants to have all the polynomials which have only these zeros, the answer is


\displaystyle C\left( z+1-i \right)^{m}\left( z+1+i \right)^{n}


where \displaystyle C is a non-zero constant and \displaystyle m and \displaystyle n are positive integers.