Lösung 2.2:4d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | The integral can be simplified by a so-called polynomial division. We add and take away | + | The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the <math>x^2</math>-term from the numerator |
| - | + | ||
| - | in the numerator and can thus eliminate the | + | |
| - | <math>x^ | + | |
| - | -term from the numerator | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.}</math>}} | ||
Thus, we have | Thus, we have | ||
| - | + | {{Displayed math||<math>\int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.}</math>}} | |
| - | <math>\int | + | |
Version vom 15:36, 28. Okt. 2008
The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the \displaystyle x^2-term from the numerator
| \displaystyle \frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.} |
Thus, we have
| \displaystyle \int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.} |
